Developing of Bluetooth mesh flooding between source-destination linking of nodes in wireless sensor networks
DOI:
https://doi.org/10.15587/1729-4061.2021.248978Keywords:
Bluetooth, mesh flooding, packet delivery ratio, wireless sensor networks, network simulation, node position allocator (NPA), Monte Carlo algorithmAbstract
Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks
Supporting Agency
- The authors gratefully acknowledge the Department of Mechanical Engineering, University of Technology, Baghdad, Iraq for the support.
References
- Bluetooth®. Available at: https://www.bluetooth.com/
- Ghaboosi, K., Xiao, Y., Latva-Aho, M., Khalaj, B. H. (2008). Overview of IEEE 802.15.2: Coexistence of Wireless Personal Area Networks with Other Unlicensed Frequency Bands Operating Wireless Devices. Emerging Wireless LANs, Wireless PANs, and Wireless MANs, 135–150. doi: https://doi.org/10.1002/9780470403686.ch6
- Bamahdi, O. A., Zummo, S. A. (2006). An Adaptive Frequency Hopping Technique With Application to Bluetooth-WLAN Coexistence. International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06). doi: https://doi.org/10.1109/icniconsmcl.2006.44
- Wu, Y., Todd, T. D., Shirani, S. (2003). SCO link sharing in Bluetooth voice access networks. Journal of Parallel and Distributed Computing, 63 (1), 45–57. doi: https://doi.org/10.1016/s0743-7315(02)00035-7
- Culler, D. E. et. al. (2012). EMOuse: Emotional gaming mouse Supervisors. Conf. Proc. IEEE Engineering in Medicine and Biology Society.
- Li, X., Li, M.-T., Gao, Z.-G., Sun, L.-N. (2008). Bluetooth ACL Packet Selection Via Maximizing the Expected Throughput Efficiency of ARQ Protocol. Lecture Notes in Computer Science, 559–568. doi: https://doi.org/10.1007/978-3-540-69384-0_61
- Etxaniz, J., Aranguren, G. (2017). Low Power Multi-Hop Networking Analysis in Intelligent Environments. Sensors, 17 (5), 1153. doi: https://doi.org/10.3390/s17051153
- Gessner, D., Alvarez, I., Ballesteros, A., Barranco, M., Proenza, J. (2014). Towards an experimental assessment of the slave elementary cycle synchronization in the Flexible Time-Triggered Replicated Star for Ethernet. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). doi: https://doi.org/10.1109/etfa.2014.7005321
- Bellavista, P., Stefanelli, C., Tortonesi, M. (2004). Middleware-level QoS differentiation in the wireless Internet: the ubiQoS solution for audio streaming over Bluetooth. First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. doi: https://doi.org/10.1109/qshine.2004.31
- What Is Bluetooth? Available at: https://www.mathworks.com/help/comm/ug/what-is-bluetooth.html
- Das, B., Sarkar, T. S., Mukherjee, S., Sinha, B., Mazumdar, S. (2020). Development of full duplex Laser based data and voice communication system bridging two IoT networks. Proceedings of the 21st International Conference on Distributed Computing and Networking. doi: https://doi.org/10.1145/3369740.3372763
- Hwang, S.-H., Ahn, B. (2013). A TDMA protocol design to relay voice communications. 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). doi: https://doi.org/10.1109/pacrim.2013.6625482
- Ensworth, J. F., Hoang, A. T., Phu, T. Q., Reynolds, M. S. (2017). Full-duplex Bluetooth Low Energy (BLE) compatible Backscatter communication system for mobile devices. 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). doi: https://doi.org/10.1109/wisnet.2017.7878752
- Rosenthal, J., Reynolds, M. S. (2019). A 1.0-Mb/s 198-pJ/bit Bluetooth Low-Energy Compatible Single Sideband Backscatter Uplink for the NeuroDisc Brain–Computer Interface. IEEE Transactions on Microwave Theory and Techniques, 67 (10), 4015–4022. doi: https://doi.org/10.1109/tmtt.2019.2938162
- Rosenthal, J., Reynolds, M. S. (2020). A Dual-Band Shared-Hardware 900 MHz 6.25 Mbps DQPSK and 2.4 GHz 1.0 Mbps Bluetooth Low Energy (BLE) Backscatter Uplink for Wireless Brain-Computer Interfaces. 2020 IEEE International Conference on RFID (RFID). doi: https://doi.org/10.1109/rfid49298.2020.9244882
- Ghori, M. R., Wan, T.-C., Sodhy, G. C., Rizwan, A. (2021). Optimization of the AODV-Based Packet Forwarding Mechanism for BLE Mesh Networks. Electronics, 10 (18), 2274. doi: https://doi.org/10.3390/electronics10182274
- Murillo, Y., Reynders, B., Chiumento, A., Malik, S., Crombez, P., Pollin, S. (2017). Bluetooth now or low energy: Should BLE mesh become a flooding or connection oriented network? 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). doi: https://doi.org/10.1109/pimrc.2017.8292705
- Hansen, E. A. J., Nielsen, M. H., Serup, D. E., Williams, R. J., Madsen, T. K., Abildgren, R. (2018). On Relay Selection Approaches in Bluetooth Mesh Networks. 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). doi: https://doi.org/10.1109/icumt.2018.8631214
- Ng, P. C., She, J. (2019). A Novel Overlay Mesh with Bluetooth Low Energy Network. 2019 IEEE Wireless Communications and Networking Conference (WCNC). doi: https://doi.org/10.1109/wcnc.2019.8886069
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Shaymaa Kadhim Mohsin, Maysoon A. Mohammed, Helaa Mohammed Yassien
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.