Conversion of synthesis gas in aerosol of Fe-Cu-K-catalyst particles at pressures of 0.1–1.0 MPa

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.251104

Keywords:

synthesis gas, aerosol nanocatalysis, mechanochemical activation, synthetic hydrocarbons, production of motor fuels

Abstract

Chemical conversion of synthesis gas to hydrocarbons and other products under the condition of the method known as "aerosol nanocatalysis" has been studied.

A laboratory installation was developed and experimental studies were carried out in the range of process-dependent parameters: pressure from 0.1 to 1.0 MPa, temperature from 483 to 533 K, catalyst concentration from 5 to 25 g/m3 of reactor volume, and mechanochemical activation intensity from 4, 0 to 11.2 Hz. It was found that an increase in pressure from 0.1 to 1.0 MPa gradually increased the conversion degree from 44.1 % to 56.5. An increase in pressure of the FTS process in conditions of aerosol catalysis from 0.1 to 1.0 MPa contributed to a stable yield growth from 14 to 17 %. Selectivity reached its maximum value of 93.1 % at a pressure of 0.3 MPa. Dependence of selectivity on the catalyst MCA intensity was characterized by the constant growth of selectivity of carbon monoxide conversion to hydrocarbons with an increase in MCA frequency from 4 to 8.5 Hz while maximum selectivity reached 91 %. With a further increase in MCA frequency to 11.2 Hz, a decrease (to 83.5 %) in the value of selectivity of carbon monoxide conversion to hydrocarbon products in the FTS process was observed. Therefore, it was recommended to consider the value of the MCA frequency from 6 to 10 Hz as an acceptable range. Maximum yield (73 wt %) of hydrocarbon fraction with a chain length from 5 to 6 carbon atoms was observed for a pressure of 0.3 MPa. The minimum yield was 35 wt % for a pressure of 1.2 MPa. At other pressure values (0.1–0.2 and 0.4–1.1 MPa) of experimental studies, the yield of this fraction varied within 38–52 wt %. A block diagram of experimental-industrial FTS installation based on principles of aerosol nanocatalysis was offered.

Author Biographies

Oleksii Domnin, PJSC "Severodonetsk ORGKHIM"

Сommissioning Engineer of Chemical Equipment

Iryna Glikina, Volodymyr Dahl East Ukrainian National University

Doctor of Technical Sciences, Professor

Department of Chemical Engineering and Ecology

Sergey Kudryavtsev, NGO "Foundation "PROSTIR"

PhD, Associate Professor

Yevhen Zubtsov, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Chemical Engineering and Ecology

Olexii Tselishchev, Volodymyr Dahl East Ukrainian National University

Doctor of Technical Sciences, Professor

Department of Chemical Engineering and Ecology

Maryna Loriia, Volodymyr Dahl East Ukrainian National University

Doctor of Technical Sciences, Professor

Department of Computer Integrated Management Systems

References

  1. Mordkovich, V. Z., Sineva, L. V., Kulchakovskaya, E. V., Asalieva, E. Y. (2015). Four Generations of Technology for Production of Synthetic Liquid Fuel Bbased on Fischer – Tropsch Synthesis. Historical Overvie. Kataliz v Promyshlennosti, 15 (5), 23–45. doi: https://doi.org/10.18412/1816-0387-2015-5-23-45
  2. Karimova A. R., Shiriyazdanov R. R., Davletshin A. R., Makhmutova O. N., Telyashev E. G., Rakhimov M. N. (2016). XTL Processes. Technological Aspects of Processing Fossil and Renewable Carbonaceous Feed by Fischer-Tropsch Process. 1. Resourses and Catalytic Basis Fischer-Tropsch Process. Baskirskii khimicheskii zhurnal, 23 (2), 71–81. Available at: http://bcj.rusoil.net/files/slider/BCJ_2_2016.pdf
  3. Rudyka, V. I. (2017). The Analysis of the Experience in Commercialization of Indirect Coal Liquefaction Technologies in the World. Problemy ekonomiky, 3, 13–19. Available at: https://www.problecon.com/export_pdf/problems-of-economy-2017-3_0-pages-13_19.pdf
  4. Tarasov, V., Antoshchenko, M., Rudniev, Y., Zolotarova, O., Davidenko, N. (2021). Metamorphism Indicators for Establishing the Endogenic Fire Hazard of Coal Mining Plants in Mining. International Journal of Environmental Science and Development, 12 (8), 242–248. doi: https://doi.org/10.18178/ijesd.2021.12.8.1346
  5. Antoshchenko, M., Tarasov, V., Nedbailo, O., Zakharova, O., Yevhen, R. (2021). On the possibilities to apply indices of industrial coal-rank classification to determine hazardous characteristics of workable beds. Mining of Mineral Deposits, 15 (2), 1–8. doi: https://doi.org/10.33271/mining15.02.001
  6. Mykola, A., Vadym, T., Olga, L.-Z., Anatolii, H., Andrii, K. (2021). About Possibility to Use Industrial Coal-Rank Classification to Reveal Coal Layers Hazardous Characteristics. Civil Engineering and Architecture, 9 (2), 507–511. doi: https://doi.org/10.13189/cea.2021.090223
  7. Popovich, A., Soloviev, G., Suvorin, A. (2017). Research into methane oxidation on oxide catalyst of the applied type. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 29–34. doi: https://doi.org/10.15587/1729-4061.2017.107249
  8. Popovich, A., Soloviev, G., Orlyk, V., Suvorin, A. (2017). Development of mathematical model of methane oxidation on fibrous catalyst. Eastern-European Journal of Enterprise Technologies, 6 (6 (90)), 33–40. doi: https://doi.org/10.15587/1729-4061.2017.118439
  9. Hunda, M. V., Yeher, D. O., Zarubin, Yu. O., Smikh, P. M., Hladun, V. V., Kasianchuk, S. V., Chepil, P. M. (2014). Rozvytok tekhnolohiy pererobky pryrodnoho hazu v ridki syntetychni palyva ta perspektyvy yikh vprovadzhennia dlia rozrobky rodovyshch vuhlevodniv. Naftohazova haluz Ukrainy, 1, 38–42. Available at: http://elar.nung.edu.ua/handle/123456789/3699
  10. Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272 (2), 287–297. doi: https://doi.org/10.1016/j.jcat.2010.04.012
  11. Gual, A., Godard, C., Castillón, S., Curulla-Ferré, D., Claver, C. (2012). Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 183 (1), 154–171. doi: https://doi.org/10.1016/j.cattod.2011.11.025
  12. Tian, D., Liu, Z., Li, D., Shi, H., Pan, W., Cheng, Y. (2013). Bimetallic Ni–Fe total-methanation catalyst for the production of substitute natural gas under high pressure. Fuel, 104, 224–229. doi: https://doi.org/10.1016/j.fuel.2012.08.033
  13. Gavrilović, L., Jørgensen, E. A., Pandey, U., Putta, K. R., Rout, K. R., Rytter, E. et. al. (2021). Fischer-Tropsch synthesis over an alumina-supported cobalt catalyst in a fixed bed reactor – Effect of process parameters. Catalysis Today, 369, 150–157. doi: https://doi.org/10.1016/j.cattod.2020.07.055
  14. Zhao, H., Liu, J.-X., Yang, C., Yao, S., Su, H.-Y., Gao, Z. et. al. (2021). Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis. CCS Chemistry, 3 (11), 2712–2724. doi: https://doi.org/10.31635/ccschem.020.202000555
  15. Chen, Y., Wei, J., Duyar, M. S., Ordomsky, V. V., Khodakov, A. Y., Liu, J. (2021). Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 50 (4), 2337–2366. doi: https://doi.org/10.1039/d0cs00905a
  16. Yahyazadeh, A., Dalai, A. K., Ma, W., Zhang, L. (2021). Fischer–Tropsch Synthesis for Light Olefins from Syngas: A Review of Catalyst Development. Reactions, 2 (3), 227–257. doi: https://doi.org/10.3390/reactions2030015
  17. Luhovskoi, A., Glikin, M., Kudryavtsev, S., Glikina, I. (2017). Obtaining synthesis-gas by the stone coal steam conversion using technology of aerosol nanocatalysis. Eastern-European Journal of Enterprise Technologies, 6 (6 (90)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.118396
  18. Luhovskoi, A., Glikin, M., Kudryavtsev, S., Glikina, I. (2018). Studying the influence of the intensity of mechanochemical activation on the process of steam conversion of coal. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.136371
  19. Glikina, I. M., Domnin, A. O., Shershnev, S. A., Glikin, M. A. (2013). Poluchenie uglevodorodov S5+ po tekhnologii aerozol'nogo nanokataliza v vibroozhizhennom sloe. Vliyanie davleniya. Visnyk NTU «KhPI», 56 (1029), 185–192. Available at: http://library.kpi.kharkov.ua/files/Vestniki/2013_56.pdf

Downloads

Published

2022-02-28

How to Cite

Domnin, O., Glikina, I., Kudryavtsev, S., Zubtsov, Y., Tselishchev, O., & Loriia, M. (2022). Conversion of synthesis gas in aerosol of Fe-Cu-K-catalyst particles at pressures of 0.1–1.0 MPa . Eastern-European Journal of Enterprise Technologies, 1(6(115), 6–16. https://doi.org/10.15587/1729-4061.2022.251104

Issue

Section

Technology organic and inorganic substances