Determining the effect of reinforcing a cement-concrete coating of bridges on the stressed-strained state of structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.251189

Keywords:

cement-concrete coating, roadbed, layered structures, composite materials, stressed-strained state

Abstract

This paper reports a study of the cement-concrete coating on bridges using FRP reinforcement. That has made it possible to design optimal structures by selecting the height for reinforcement arrangement in the layers of a roadbed in order to ensure strength characteristics.

An engineering method for calculating a hard roadbed with composite reinforcement has been devised, which makes it possible to take into consideration its work both in a joint package of the structure with a slab and separately – when it exfoliates from the slab of the bridge's span structure. Underlying this research are effort-determining methods, estimation dependences from the theory of bending layered structures, as well as dependences from elasticity theory to assess the strength of materials for a roadbed. The consideration of shear strains when designing slabs has helped establish that the deflections according to the devises method were 1.4 times larger than those in the classical approach.

The method was tested by a numerical experiment, which confirmed the need to use composite reinforcement in the upper layers of a road surface on bridges, which improves its durability by 1.2 times. The results of the numerical experiment indicate that the equivalent stresses in the lower layers of a free-moving roadbed were 2.91 MPa, and, when operating in a joint assembly with a slab, they took a negative value (–0.2 MPa).

Practical application of the devised calculation method makes it possible to determine the refined normal stresses in the layers of a roadbed, taking into consideration the characteristics of structure operation. Owing to this, additional opportunities open up for calculating the roadbeds of bridges whose design utilizes the most common types of span structures in the bridge industry.

Author Biographies

Igor Gameliak, National Transport University

Doctor of Technical Sciences, Professor

Department of Airports

Andrew Dmytrychenko, National Transport University

PhD, Associate Professor

Department of Transport Law and Logistics

Vitalii Tsybulskyi, National Transport University

PhD, Senior Lecturer

Department of Strength of Materials and Engineering Science

Anna Kharchenko, National Transport University

Doctor of Technical Sciences, Associate Professor

Department of Transport Construction and Property Management

References

  1. Hameliak, I. P., Tsybulskyi, V. M., Kharchenko, A. M. (2021). Rozvytok metodiv otsinky napruzheno-deformovanoho stanu armovanoho zhorstkoho dorozhnoho odiahu. Technical sciences: the analysis of trends and development prospects, 98–100. doi: https://doi.org/10.30525/978-9934-26-109-1-23
  2. Urbanski, M., Lapko, A., Garbacz, A. (2013). Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structures. Procedia Engineering, 57, 1183–1191. doi: https://doi.org/10.1016/j.proeng.2013.04.149
  3. Prachasaree, W., Limkatanyu, S., Kaewjuea, W., GangaRao, H. V. S. (2019). Simplified Buckling-Strength Determination of Pultruded FRP Structural Beams. Practice Periodical on Structural Design and Construction, 24 (2), 04018036. doi: https://doi.org/10.1061/(asce)sc.1943-5576.0000405
  4. Sun, R., Perera, R., Gu, J., Wang, Y. (2021). A Simplified Approach for Evaluating the Flexural Response of Concrete Beams Reinforced With FRP Bars. Frontiers in Materials, 8. doi: https://doi.org/10.3389/fmats.2021.765058
  5. Chen, A., Davalos, J. F. (2014). Design Equations and Example for FRP Deck–Steel Girder Bridge System. Practice Periodical on Structural Design and Construction, 19 (2), 04014003. doi: https://doi.org/10.1061/(asce)sc.1943-5576.0000173
  6. Mohamed, K., Benmokrane, B., Nazair, C., Loranger, M.-A. (2021). Development and Validation of a Testing Procedure for Determining Tensile Strength of Bent GFRP Reinforcing Bars. Journal of Composites for Construction, 25 (2), 04020087. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0001102
  7. Ng, P. L., Barros, J. A. O., Kaklauskas, G., Lam, J. Y. K. (2020). Deformation analysis of fibre-reinforced polymer reinforced concrete beams by tension-stiffening approach. Composite Structures, 234, 111664. doi: https://doi.org/10.1016/j.compstruct.2019.111664
  8. Al-Rubaye, M., Manalo, A., Alajarmeh, O., Ferdous, W., Lokuge, W., Benmokrane, B., Edoo, A. (2020). Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems. Composite Structures, 236, 111836. doi: https://doi.org/10.1016/j.compstruct.2019.111836
  9. Holden, K. M., Pantelides, C. P., Reaveley, L. D. (2014). Bridge Constructed with GFRP-Reinforced Precast Concrete Deck Panels: Case Study. Journal of Bridge Engineering, 19 (5), 05014001. doi: https://doi.org/10.1061/(asce)be.1943-5592.0000589
  10. Yost, J. R., Steffen, R. E. (2014). Strength and Ductility Trends for Concrete Members Strengthened in Flexure with Carbon Fiber-Reinforced Polymer Reinforcement. Journal of Composites for Construction, 18 (6), 04014015. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0000460
  11. Wu, G., Wang, X., Wu, Z., Dong, Z., Zhang, G. (2014). Durability of basalt fibers and composites in corrosive environments. Journal of Composite Materials, 49 (7), 873–887. doi: https://doi.org/10.1177/0021998314526628
  12. Valovoi, O. I., Yeromenko, O. Yu., Valovoi, M. O. (2017). Kharakterystyky mitsnosti ta zhorstkosti balok armovanykh bazaltovoiu armaturoiu. Visnyk Kryvorizkoho natsionalnoho universytetu, 44, 142–146.
  13. Karpiuk, V., Tselikova, A., Khudobych, A., Karpiuk, I., Kostyuk, A. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4 (7 (106)), 42–53. doi: https://doi.org/10.15587/1729-4061.2020.209378
  14. Piskunov, V. G., Verizhenko, V. E., Prisyazhnyuk, V. K., Sipetov, V. S., Karpilovskiy, V. S. (1987). Raschet neodnorodnykh obolochek i plastin metodom konechnykh elementov. Kyiv: Vischa shkola, 200.
  15. Gucunski, N., Maher, A., Basily, B., La, H., Lim, R., Parvardeh H., Kee, S.-H. (2013). Robotic platform rabit for condition assessment of concrete bridge decks using multiple nde technologies. HDKBR INFO Magazin, 3 (4), 5–12. Available at: https://hrcak.srce.hr/148772
  16. Gheitasi, A., Harris, D. K. (2014). Effect of Deck Deterioration on Overall System Behavior, Resilience and Remaining Life of Composite Steel Girder Bridges. Structures Congress 2014. doi: https://doi.org/10.1061/9780784413357.056
  17. Gamelіak, I. P., Koval, T. I. (2017). Improvement of methods for fatigue of the concrete element sections, reinforced non-metallic composite basalt rebar. Avtomobilni dorohy i dorozhnie budivnytstvo, 99, 184–201. Available at: http://publications.ntu.edu.ua/avtodorogi_i_stroitelstvo/99/184-201.pdf
  18. Sonnenschein, R., Gajdosova, K., Holly, I. (2016). FRP Composites and their Using in the Construction of Bridges. Procedia Engineering, 161, 477–482. doi: https://doi.org/10.1016/j.proeng.2016.08.665
  19. Mingchao, W., Zuoguang, Z., Yubin, L., Min, L., Zhijie, S. (2008). Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. Journal of Reinforced Plastics and Composites, 27 (4), 393–407. doi: https://doi.org/10.1177/0731684407084119
  20. Gooranorimi, O., Bradberry, T., Dauer, E., Myers, J., Nanni, A. (2016). FRP Reinforcement for Concrete: Performance Assessment and New Construction Volume I: Sierrita De La Cruz Creek Bridge. RE-CAST: Research on Concrete Applications For Sustainable Transportation. Available at: https://www.researchgate.net/publication/310843748_FRP_Reinforcement_for_Concrete_Performance_Assessment_and_New_Construction_Volume_I_Sierrita_De_La_Cruz_Creek_Bridge
  21. HBN V.2.3-37641918-577:2016. Avtomobilni dorohy. Dorozhniy odiah zhorstkyi. Proektuvannia.
  22. Varvak, P. M., Buzun, I. M., Gorodetskiy, A. S. et. al. (1981). Metod konechnykh elementov. Kyiv: Vischa shkola, 176.
  23. Kanin, A. P., Hrynevytskyi, B. V., Tsybulskyi, V. M. (2018). Improvement of non-classical calculation model of strength of composite beam-plate structure of road bridges. Automobile roads and road construction, 104, 82–85. Available at: http://publications.ntu.edu.ua/avtodorogi_i_stroitelstvo/104/82.pdf
  24. Vekua, I. N. (1955). Ob odnom metode rascheta prizmaticheskikh obolochek. Tr. Tbilis. mat. in-ta, 21, 191–195.
  25. TU U V.2.7-25.2-21191464-024:2011. Armatura kompozytna «Ekibar» dlia armuvannia konstruktsiy z betonu. Tekhnichni umovy.
  26. Tsybulskyi, V. M. (2021). Udoskonalennia metodu rozrakhunku zhorstkoho dorozhnoho odiahu mostiv z kompozytnoiu armaturoiu. Kyiv: Natsionalnyi transportnyi un-t, 22. Available at: http://diser.ntu.edu.ua/Tsybulskyi_aref.pdf

Downloads

Published

2022-02-28

How to Cite

Gameliak, I., Dmytrychenko, A., Tsybulskyi, V., & Kharchenko, A. (2022). Determining the effect of reinforcing a cement-concrete coating of bridges on the stressed-strained state of structures . Eastern-European Journal of Enterprise Technologies, 1(7(115), 21–31. https://doi.org/10.15587/1729-4061.2022.251189

Issue

Section

Applied mechanics