Development of mathematical description of mechanical characteristics of integrated multi-motor electric drive for drying plant




multi-motor electric drive, electric working shaft, experimental mechanical characteristics, mathematical model, drying, technological process, synchronizing moment, additional resistance, rotor link, misalignment angle


More than 60 % of electric energy in industry and agriculture is consumed by an electric drive. In a number of production mechanisms, machines and aggregates of various industries, synchronous rotation of several electric motors connected to each other mechanically, electrically or technologically is needed. This requires the use of more complex methods of controlling electromechanical systems, since two or more electric motors must work in concert for one load, which, in turn, entails the use of a new element base, power and control, allowing to implement these technological cycles of work.

The object of research is a three-motor electromechanical system interconnected and operating according to the “electric working shaft” (EWS) system. The main fundamental difference from earlier works is that they consider a system of coordinated rotation of only two asynchronous motors, respectively, only one misalignment angle between two asynchronous motors was taken into account. At the same time, the conclusions of the moments and currents of the motors were significantly simplified.

In the proposed study, the number of consistently (synchronously) rotating motors from three and above is taken into consideration. In this case, the number of misalignment angles is assumed to be equal to the number of engines, that is, three involved in rotation.

The analytical expressions of the basic electromechanical relations of the “electric working shaft” system with the regulation of the supply voltage are developed. A method is proposed for calculating the statistical characteristics of the regulated EWS system, which is easy to use and allows calculations in a wide range of rotor misalignment angles at various engine loads

Author Biographies

Sultanbek Issenov, S. Seifullin Kazakh Agro Technical University

PhD, Associate Professor, Dean

Department of Energy

Ruslan Iskakov, S. Seifullin Kazakh Agro Technical University

PhD, Associate Professor

Department of Agrarian Technique and Technology

Kazhybek Tergemes, Almaty University of Power Engineering and Telecommunications

PhD, Associate Professor

Department of Power Supply of Industrial Enterprises

Zhanat Issenov, Toraighyrov University

Master of Technical Sciences

Department of Electrical Power


  1. Sadovskiy, I. M. (1948). Soglasovannoe vraschenie asinkhronnykh dvigateley. Moscow-Leningrad: Gosenergoizdat, 210.
  2. Sansyzbaevich, I. S., Sansyzbaevich, I. Z., Nurzhanuly, N. N., Amergalievich, M. S. (2017). Development of algorithm flow graph, mealy automaton graph and mathematical models of microprogram control mealy automaton for microprocessor control device. 2017 International Siberian Conference on Control and Communications (SIBCON). doi:
  3. Onischenko, G. B. (2018). Teoriya elektroprivoda. Moscow: Infra-M, 384.
  4. Tergemes, K. T. (2016). Mnogodvigatel'nye asinkhronnye elektroprivody chesal'nykh apparatov s tiristornymi preobrazovatelyami napryazheniya. Almaty: KazNTU, 108.
  5. Chilikin, M. G., Sandler, A. S. (1981). Obschiy kurs elektroprivoda. Moscow: Energoizdat, 576.
  6. Donskoy, N. V. (2012). Asinkhronnyy dvigatel' v sistemakh avtomaticheskogo upravleniya. Cheboksary: Izd-vo Chuvashskogo universiteta, 284.
  7. Masandilov, L. B. (2012). Mashinostroenie. Entsiklopediya. Vol. 4-2. Elektroprivod. Gidro- i vibroprivody. Kn. 1 Elektroprivod. Moscow: Mashinostroenie, 520.
  8. Frolov, Yu. M., Shelyakin, V. P. (2018). Reguliruemiy asinkhronniy elektroprivod. Sankt-Peterburg: Lan', 464.
  9. Firago, B. I., Pavlyachik, L. B. (2006). Reguliruemye elektroprivody peremennogo toka. Minsk: Tekhnoperspektiva, 363.
  10. Yakunicheva, O. N., Prokof'eva, A. P. (2014). Proektirovanie elektroprivoda promyshlennykh mekhanizmov. Sankt-Peterburg: Lan', 448.
  11. Astashev, V. K. (2012). Mashinostroenie. Entsiklopediya. Elektroprivod. Gidro- i vibroprivody. Vol. IV-2. Gidro- i vibroprivody. Moscow: Mashinostroenie, 304.
  12. Epifanov, A. P., Guschinskiy, A. G., Malaychuk, L. M. (2016). Elektroprivod v sel'skom khozyaystve. Sankt-Peterburg: Lan', 224.
  13. Kisarimov, R. A. (2012). Elektroprivod. Moscow: Radio i svyaz', 352.
  14. Nikitenko, G. V. (2013). Elektroprivod proizvodstvennykh mekhanizmov. Sankt-Peterburg: Lan', 224.
  15. Novikov, V. A. (2014). Elektroprivod v sovremennykh tekhnologiyakh. Moscow: Academia, 143.
  16. Krylov, Yu. A., Karandaev, A. S., Medvedev, V. N. (2013). Energosberezhenie i avtomatizatsiya proizvodstva v teploenergeticheskom khozyaystve goroda. Chastotno-reguliruemyy elektroprivod. Sankt-Peterburg: Lan', 176.
  17. Iskakov, R. М., Halam, S., Issenov, S. S., Iskakova, A. M., Beisebekova, D. M. (2013). Heat-and-Moisture Transfer at the Feed Meal Particles Drying and Grinding. Life Science Journal, 10 (12s), 497–502. Available at:
  18. Iskakov, R. M., Iskakova, A. M., Issenov, S. S., Beisebekova, D. M., Khaimuldinova, A. K. (2019). Technology of Multi-stage Sterilization of Raw Materials with the Production of Feed Meal of High Biological Value. Journal of Pure and Applied Microbiology, 13 (1), 307–312. doi:
  19. Iskakov, R. М., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2015). Microbiological Appraisal of Feed Meal of Animal Origin, Produced by Drying and Grinding Installation. Journal of Pure and Applied Microbiology, 9 (1), 587–592. Available at:




How to Cite

Issenov, S., Iskakov, R., Tergemes, K., & Issenov, Z. (2022). Development of mathematical description of mechanical characteristics of integrated multi-motor electric drive for drying plant. Eastern-European Journal of Enterprise Technologies, 1(8(115), 46–54.



Energy-saving technologies and equipment