Method for reducing longitudinal spherical aberration of intraocular lenses

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.251521

Keywords:

crystal, spherical aberration, intraocular lens, polytetrafluoroethylene, vacuum spraying, Zemax, SolidWorks

Abstract

It has been established that of all types of aberrations following the implantation of intraocular lenses, the most significant is spherical, inherent in the spherical optics in various aspects. This paper proposes a method for reducing the longitudinal spherical aberration of intraocular lenses by applying an additional optical layer onto their surface. To reduce spherical aberration, the thickness of a layer of polytetrafluoroethylene (Teflon) was simulated in the programming environment Zemax 13 (USA). Calculations that were performed included refractive indices of the environment and the material of the optics. It was established that in order to reduce the value of the longitudinal spherical aberration of an intraocular lens made of hydrophobic acrylic, the thickness of aTeflon layer should be about 100 nm.

The results of spraying indicate an improvement in the optical characteristics of the lens by reducing longitudinal spherical aberration. When examining different areas of lenses with spraying, it was established that there is no spherical aberration in the lens area. In the 4 mm zone, the spherical aberration indicator decreased by 4 times compared to the original lens. In the region with a diameter of 6 mm, spherical aberration decreased by 0.2. Applying a layer of Teflon reduced Fresnel reflection by 4 times, which improves the sensitivity and contrast of vision. The hydrophobic properties of Teflon provide the anti-adhesive state of the lens, which is a counteraction to the development of secondary cataracts. The SolidWorks 19 software (France) was used to design a model of the lens "NVision Optics" whose aberrations were eliminated as much as possible

Author Biographies

Oleksandr Polishchuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Postgraduate Student

Department of Biomedical Engineering

Vasiliy Kozyar, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD of Medicine, Associate Professor

Department of Biomedical Engineering

Dmytro Zhaboiedov, Bogomolets National Medical University

Doctor of Medical Sciences, Professor

Department of Ophthalmology

References

  1. Foster, A. (1999). Cataract – a global perspective: output, outcome and outlay. Eye, 13 (3), 49–53. doi: https://doi.org/10.1038/eye.1999.120
  2. Thylefors, B., Négrel, A. D., Pararajasegaram, R., Dadzie, K. Y. (1995). Global data on blindness. Bulletin of the World Health Organization, 73 (1), 115–121. Available at: https://apps.who.int/iris/handle/10665/263950
  3. Thylefors, B., Resnikoff, S. (1998). Progress in the control of world blindness and future perspectives. Sante, 8 (2), 140–143. Available at: https://pubmed.ncbi.nlm.nih.gov/9642739/
  4. Takhchidi, Kh. P., Agafonova, V. V., Yanovskaya, N. P., Frankovska-Gerlak, M. (2008). Simultaneous Surgery of the Cataract and Open-angle Glaucoma in Cases with the Pseudoexfoliative Syndrome. Three years follow-up. Fyodorov Journal of Ophthalmic Surgery, 1, 22–28. Available at: https://eyepress.ru/obj0066/OS2008n1.pdf
  5. Ioshin, I. E., Tolchinskaya, A. I. (2013). Surgical treatment of patients with bilateral cataracts. Fyodorov Journal of Ophthalmic Surgery, 2, 10–15.
  6. Kopaeva, V. (Ed.) (2018). Eye Diseases. Moscow: Oftal'mologiya, 495. doi: https://doi.org/10.25276/978-5-903624-36-2
  7. Calossi, A. (2007). Corneal Asphericity and Spherical Aberration. Journal of Refractive Surgery, 23 (5), 505–514. doi: https://doi.org/10.3928/1081-597x-20070501-15
  8. Polischuk, A., Kozyar, V., Zhaboedov, D. (2020). Reducing Photic Phenomena and Retinal Background Illumination by Using an Intraocular Lens. Innovative Biosystems and Bioengineering, 4 (4), 199–210. doi: https://doi.org/10.20535/ibb.2020.4.4.214806
  9. Engren, A.-L., Behndig, A. (2013). Anterior chamber depth, intraocular lens position, and refractive outcomes after cataract surgery. Journal of Cataract and Refractive Surgery, 39 (4), 572–577. doi: https://doi.org/10.1016/j.jcrs.2012.11.019
  10. Piers, P. A., Weeber, H. A., Artal, P., Norrby, S. (2007). Theoretical Comparison of Aberration-correcting Customized and Aspheric Intraocular Lenses. Journal of Refractive Surgery, 23 (4), 374–384. doi: https://doi.org/10.3928/1081-597x-20070401-10
  11. Zhaboedov, D. G. (2015). Hirurgicheskaya korrektsiya aberratsiy opticheskoy sistemy glaza pri lechenii vozrastnoy katarakty. Kyiv.
  12. Zheleznyak, L., Kim, M. J., MacRae, S., Yoon, G. (2012). Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system. Journal of Cataract and Refractive Surgery, 38 (10), 1724–1733. doi: https://doi.org/10.1016/j.jcrs.2012.05.032
  13. Shysha, T. A., Chyzh, I. H. (2014). Method of control of wave aberrations of implanted intraocular lenses. Vestnik Belorussko-Rossiyskogo universiteta, 4 (45), 129–135. doi: https://doi.org/10.53078/20778481_2014_4_129
  14. Wang, L., Dai, E., Koch, D. D., Nathoo, A. (2003). Optical aberrations of the human anterior cornea. Journal of Cataract and Refractive Surgery, 29 (8), 1514–1521. doi: https://doi.org/10.1016/s0886-3350(03)00467-x
  15. Liao, X., Lin, J., Tian, J., Wen, B., Tan, Q., Lan, C. (2018). Evaluation of Optical Quality: Ocular Scattering and Aberrations in Eyes Implanted with Diffractive Multifocal or Monofocal Intraocular Lenses. Current Eye Research, 43 (6), 696–701. doi: https://doi.org/10.1080/02713683.2018.1449220
  16. Chang, D. H., Rocha, K. M. (2016). Intraocular lens optics and aberrations. Current Opinion in Ophthalmology, 27 (4), 298–303. doi: https://doi.org/10.1097/icu.0000000000000279
  17. Li, J., Xue, C. (2018). Design for Mid-range Diffraction Multifocal Intraocular Lens. ACTA PHOTONICA SINICA, 47 (9), 922001. doi: https://doi.org/10.3788/gzxb20184709.0922001
  18. Gatinel, D., Pagnoulle, C., Houbrechts, Y., Gobin, L. (2011). Design and qualification of a diffractive trifocal optical profile for intraocular lenses. Journal of Cataract and Refractive Surgery, 37 (11), 2060–2067. doi: https://doi.org/10.1016/j.jcrs.2011.05.047
  19. González-Acuña, R. G., Chaparro-Romo, H. A., Gutiérrez-Vega, J. C. (2019). General formula to design a freeform singlet free of spherical aberration and astigmatism. Applied Optics, 58 (4), 1010. doi: https://doi.org/10.1364/ao.58.001010
  20. Polishchuk, О. (2021). Pat. No. 150305 UA. Obiemozaminna multyfokalna intraokuliarna linza "NVision Optics ". No. u202104749; declareted: 19.08.2021; published: 26.01.2022, Bul. No. 4. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=280354
  21. Moskalev, V. A. (1995). Prikladnaya fizicheskaya optika. Sankt-Peterburg: Politekhnika, 528.
  22. Landsberg, G. S. (2003). Optika. Moscow: FIZMATLIT, 848.
  23. Gritsenko, K. (2008). Plenki politetraftoretilena, nanesennye ispareniem v vakuume: mekhanizm rosta, svoystva, primenenie. Rossiyskiy himicheskiy zhurnal, LII (3), 112–123. Available at: https://cyberleninka.ru/article/n/plenki-politetraftoretilena-nanesennye-ispareniem-v-vakuume-mehanizm-rosta-svoystva-primenenie
  24. Kolobrodov, V., Tymchyk H. (2011). Dyfraktsiyna teoriya optychnykh system. Kyiv: NTUU “KPI”, 148.
  25. Milevskyi, V. Y., Chyzh, I. H. (2015). Methods and hardware for testing intraocular lens. Visnyk of Vinnytsia Polytechnical Institute, 3, 7–14. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/783
  26. Kolobrodov, V. G., Tymchik, G. S., Kolobrodov, M. S. (2015). The diffraction limit of an optical spectrum analyzer. Twelfth International Conference on Correlation Optics. doi: https://doi.org/10.1117/12.2228534
  27. Usui, H. (2000). Polymeric film deposition by ionization-assisted method for optical and optoelectronic applications. Thin Solid Films, 365 (1), 22–29. doi: https://doi.org/10.1016/s0040-6090(99)01108-6
  28. Murugan, K., Ragupathy, A., Balasubramanian, V., Sridhar, K. (2014). Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings. Surface and Coatings Technology, 247, 90–102. doi: https://doi.org/10.1016/j.surfcoat.2014.03.022
  29. Nelea, V., Holvoet, S., Turgeon, S., Mantovani, D. (2009). Deposition of fluorocarbon thin films on outer and inner surfaces of stainless steel mini-tubes by pulsed plasma polymerization for stents. Journal of Physics D: Applied Physics, 42 (22), 225208. doi: https://doi.org/10.1088/0022-3727/42/22/225208
  30. Kolomzarov, Yu. (2011). Sozdanie vakuumnoy ustanovki dlya naneseniya organicheskih i organo-neorganicheskih mnogokomponentnyh nanoplenok. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta), 10 (36), 91–93.
  31. Polishchuk, O. S. (2021). Pat. No. 149961 UA. Inzhektor dlia implantatsiyi ta eksplantatsiyi intraokuliarnoi linzy. No. u202104750; declareted: 19.08.2021; published: 15.12.2021, Bul. No. 50. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=279777
  32. Fernandez, E. J., Artal, P. (2017). Achromatic doublet intraocular lens for full aberration correction. Biomedical Optics Express, 8 (5), 2396. doi: https://doi.org/10.1364/boe.8.002396

Downloads

Published

2022-02-25

How to Cite

Polishchuk, O., Kozyar, V., & Zhaboiedov, D. (2022). Method for reducing longitudinal spherical aberration of intraocular lenses. Eastern-European Journal of Enterprise Technologies, 1(5(115), 14–22. https://doi.org/10.15587/1729-4061.2022.251521

Issue

Section

Applied physics