Modeling the wetting of titanium dioxide and steel substrate in water-borne paint and varnish materials in the presence of surfactants

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.252757

Keywords:

wetting of coatings, surfactants, water-borne paints, organic coatings

Abstract

This paper reports the results of studying the effect of two additives such as polyether siloxane (PS) and sodium polyacrylate (SPA) on the wetting of various substrates in water-borne paints (WB paints).

Titanium dioxide (TiO2), paraffin (PA), steel (ST), and glass (GL) were used as solid substrates. The edge wetting angle (θ0) and the ratio (dCosθ/dСS) were used as the criterion for assessing the wettability of solid substrates. In aqueous solutions (without acrylic resin), both surfactants improve the wetting of the substrates. For PS, all the substrates studied, depending on θ depression, can be arranged in a row: ST>PA>GL>TiO2.

For SPA: PA>TiO2>GL>ST. The introduction of an acrylic film-forming agent in the composition enhances the wetting ability of SPA (in comparison with the aqueous solution of surfactants). With an increase in the concentration of SPA from 0 to 4 g/dm3 in acrylic resin solutions, the edge wetting angle of steel decreases by 6÷8° (while in water by only 3°).

With respect to TiO2, the wetting activity of SPA does not depend on the acrylic content of the water. PS in acrylic-containing compositions exhibits worse wetting activity than SPA. The introduction of surfactants in the compositions improves the quality of coatings. With optimal SPA contents in the compositions, the corrosion rate of coatings is reduced (in distilled water by 45 %, in 60 % NaCl solution by 60 %). At the same time, the gloss of coatings increases by 50 % while adhesion increases by 2 points (according to ISO 11845: 2020). This is fully correlated with the nature of the effect of surfactants on the wetting of the steel substrate and pigment (titanium dioxide). Based on probabilistic-deterministic planning, the compositions of WB paints were optimized, ensuring their maximum wetting of TiO2 and ST. Equations for calculating cosθ depending on the content of acrylic polymer and surfactants have been derived

Author Biographies

Antonina Dyuryagina, Manash Kozybayev North Kazakhstan University

PhD, Professor

Department of Chemistry and Chemical Technology

Aida Lutsenko, Manash Kozybayev North Kazakhstan University

Master, PhD Student

Department of Chemistry and Chemical Technology

Alexandr Demyanenko, Manash Kozybayev North Kazakhstan University

PhD

Department of Power Engineering and Radio Electronics

Vitaliy Tyukanko, Manash Kozybayev North Kazakhstan University

PhD

Department of Chemistry and Chemical Technology

Kirill Ostrovnoy, Manash Kozybayev North Kazakhstan University

Master, Senior Lecturer

Department of Chemistry and Chemical Technology

Alyona Yanevich, Manash Kozybayev North Kazakhstan University

Master, Lecturer

Department of Chemistry and Chemical Technologies

References

  1. Ortiz-Herrero, L., Cardaba, I., Bartolomé, L., Alonso, M. L., Maguregui, M. I. (2020). Extension study of a statistical age prediction model for acrylic paints. Polymer Degradation and Stability, 179, 109263. doi: https://doi.org/10.1016/j.polymdegradstab.2020.109263
  2. Dao, P. H., Nguyen, T. D., Nguyen, T. C., Nguyen, A. H., Mac, V. P., Tran, H. T. et. al. (2022). Assessment of some characteristics, properties of a novel waterborne acrylic coating incorporated TiO2 nanoparticles modified with silane coupling agent and Ag/Zn zeolite. Progress in Organic Coatings, 163, 106641. doi: https://doi.org/10.1016/j.porgcoat.2021.106641
  3. Kozakiewicz, J., Trzaskowska, J., Domanowski, W., Kieplin, A., Ofat-Kawalec, I., Przybylski, J. et. al. (2020). Studies on synthesis and characterization of aqueous hybrid silicone-acrylic and acrylic-silicone dispersions and coatings. Part II. Progress in Organic Coatings, 138, 105297. doi: https://doi.org/10.1016/j.porgcoat.2019.105297
  4. Ji, S., Gui, H., Guan, G., Zhou, M., Guo, Q., Tan, M. Y. J. (2021). A multi-functional coating based on acrylic copolymer modified with PDMS through copolymerization. Progress in Organic Coatings, 156, 106254. doi: https://doi.org/10.1016/j.porgcoat.2021.106254
  5. Ji, S., Gui, H., Guan, G., Zhou, M., Guo, Q., Tan, M. Y. J. (2021). Molecular design and copolymerization to enhance the anti-corrosion performance of waterborne acrylic coatings. Progress in Organic Coatings, 153, 106140. doi: https://doi.org/10.1016/j.porgcoat.2021.106140
  6. Voogt, B., Venema, P., Sagis, L., Huinink, H., Erich, B., Scheerder, J., Adan, O. (2019). Surface characterization of drying acrylic latex dispersions with variable methacrylic acid content using surface dilatational rheology. Journal of Colloid and Interface Science, 556, 584–591. doi: https://doi.org/10.1016/j.jcis.2019.08.074
  7. Arai, K., Mizutani, T., Kimura, Y., Miyamoto, M. (2016). Unique structure and properties of inorganic–organic hybrid films prepared from acryl/silica nano-composite emulsions. Progress in Organic Coatings, 93, 109–117. doi: https://doi.org/10.1016/j.porgcoat.2015.12.002
  8. Zhou, G. qiang, Wang, Y. Y. (2019). Preparation and application of modified hydr oxyl acrylic dispersion without solvent by a four step synthetic approach. Progress in Organic Coatings, 130, 93–98. doi: https://doi.org/10.1016/j.porgcoat.2019.01.049
  9. Wong, J. C., Ngoi, K. H., Chia, C. H., Jeon, T., Kim, H., Kim, H.-J. et. al. (2022). Surface hardness and abrasion resistance natures of thermoplastic polymer covers and windows and their enhancements with curable tetraacrylate coating. Polymer, 239, 124419. doi: https://doi.org/10.1016/j.polymer.2021.124419
  10. Silva, M. F., Doménech-Carbó, M. T., Osete-Cortina, L. (2015). Characterization of additives of PVAc and acrylic waterborne dispersions and paints by analytical pyrolysis–GC–MS and pyrolysis–silylation–GC–MS. Journal of Analytical and Applied Pyrolysis, 113, 606–620. doi: https://doi.org/10.1016/j.jaap.2015.04.011
  11. Izmitli, A., Ngunjiri, J., Lan, T., Pacholski, M. L., Smith, R., Langille, M. et. al. (2019). Impact of silicone additives on slip/mar performance and surface characteristics of waterborne acrylic coatings. Progress in Organic Coatings, 131, 145–151. doi: https://doi.org/10.1016/j.porgcoat.2019.02.019
  12. Bamane, P. B., Jagtap, R. N. (2022). Synthesis and characterisation of a non-halogenated water-based functional additive to improve ink-adhesion on untreated polypropylene surfaces. International Journal of Adhesion and Adhesives, 113, 103077. doi: https://doi.org/10.1016/j.ijadhadh.2021.103077
  13. Ouyang, S., Lin, Z., Cao, L., Ding, Y., Shen, L. (2021). Preparation of excellent-water-resistance water-borne alkyd/acrylic hybrid coatings with varied maleic anhydride content. Progress in Organic Coatings, 161, 106537. doi: https://doi.org/10.1016/j.porgcoat.2021.106537
  14. Kubiak, K. J., Mathia, T. G., Wilson, M. C. T. (2009). Methodology for metrology of wettability versus roughness of engineering surfaces. Proceeding of 14th International Congress of Metrology. Available at: https://www.researchgate.net/publication/215751897_Methodology_for_metrology_of_wettability_versus_roughness_of_engineering_surfaces
  15. Malyshev, V. P. (1981). Veroyatnostno-determinirovannoe planirovanie eksperimenta. Alma-Ata: Nauka AN KazSSR, 116. Available at: https://rusneb.ru/catalog/000199_000009_001059848/
  16. Ostrovnoy, K., Dyuryagina, A., Demyanenko, A., Tyukanko, V. (2021). Optimization of titanium dioxide wetting in alkyd paint and varnish materials in the presence of surfactants. Eastern-European Journal of Enterprise Technologies, 4 (6 (112)), 41–50. doi: https://doi.org/10.15587/1729-4061.2021.237879
  17. Protod'yakonov, M. M. (1932). Sostavlenie gornyh norm i pol'zovanie imi. Moskva, Leningrad, Novosibirsk: Gos. Nauchno-tekhn. Gornoe izd-vo, 36. Available at: https://rusneb.ru/catalog/000200_000018_rc_2676489/
  18. Dyuryagina, A. N., Tyukan'ko, V. Yu., Demyanenko, A. V., Kukemin, Ye. A. (2010). Study of polyorganosiloxanes wetting activity in the presence of surfactants. Lakokrasochnye materialy i ih primenenie, 10, 38–40. Available at: https://www.elibrary.ru/item.asp?id=23487903
  19. Dyuryagina, A. N., Kulemina, E. A., Poluykova, A. A., Degtyareva, S. I. (2012). Issledovanie smachivayuschey sposobnosti aminosoderzhaschih poverhnostno-aktivnyh veschestv. Himicheskiy zhurnal Kazahstana, 1, 128–135. Available at: https://nauka.kz/page.php?page_id=964&lang=1&page=4586
  20. Tyukanko, V. Y., Duryagina, A. N., Ostrovnoy, K. A., Demyanenko, A. V. (2017). Study of wetting of aluminum and steel substrates with polyorganosiloxanes in the presence of nitrogen-containing surfactants. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 328 (11), 75–82. Available at: http://izvestiya.tpu.ru/archive/article/view/1949
  21. Dyuryagina, A. N., Ostrovnoy, K. A., Kozik, D. Yu. (2021). Modifying effect of petrochemical waste processing products on wetting and stabilization of solid-phase particles. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 332 (12), 164–172. doi: https://doi.org/10.18799/24131830/2021/12/3124

Downloads

Published

2022-02-28

How to Cite

Dyuryagina, A., Lutsenko, A., Demyanenko, A., Tyukanko, V., Ostrovnoy, K., & Yanevich, A. (2022). Modeling the wetting of titanium dioxide and steel substrate in water-borne paint and varnish materials in the presence of surfactants. Eastern-European Journal of Enterprise Technologies, 1(6(115), 31–42. https://doi.org/10.15587/1729-4061.2022.252757

Issue

Section

Technology organic and inorganic substances