Determination of the influence of the choice of the pruning procedure parameters on the learning quality of a multilayer perceptron

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253103

Keywords:

multilayer perceptron, neural network, pruning, learning curve, weight coefficients, image classification

Abstract

Pruning connections in a fully connected neural network allows to remove redundancy in the structure of the neural network and thus reduce the computational complexity of its implementation while maintaining the resulting characteristics of the classification of images entering its input. However, the issues of choosing the parameters of the pruning procedure have not been sufficiently studied at the moment. The choice essentially depends on the configuration of the neural network. However, in any neural network configuration there is one or more multilayer perceptrons. For them, it is possible to develop universal recommendations for choosing the parameters of the pruning procedure. One of the most promising methods for practical implementation is considered – the iterative pruning method, which uses preprocessing of input signals to regularize the learning process of a neural network. For a specific configuration of a multilayer perceptron and the MNIST (Modified National Institute of Standards and Technology) dataset, a database of handwritten digit samples proposed by the US National Institute of Standards and Technology as a standard when comparing image recognition methods, dependences of the classification accuracy of handwritten digits and learning rate were obtained on the learning step, pruning interval, and the number of links removed at each pruning iteration. It is shown that the best set of parameters of the learning procedure with pruning provides an increase in the quality of classification by about 1 %, compared with the worst set in the studied range. The convex nature of these dependencies allows a constructive approach to finding a neural network configuration that provides the highest classification accuracy with the minimum amount of computational costs during implementation.

Author Biographies

Oleg Galchonkov, National University Odessa Polytechnic

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

Alexander Nevrev, National University Odessa Polytechnic

PhD, Associate Professor

Department of Information Systems

Institute of Computer Systems

Bohdan Shevchuk, National University Odessa Polytechnic

Postgraduate Student

Department of Information Systems

Institute of Computer Systems

Nikolay Baranov, National University Odessa Polytechnic

Senior Lecturer

Department of Information Systems

Institute of Computer Systems

References

  1. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26. doi: http://doi.org/10.1016/j.neucom.2016.12.038
  2. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T. et. al. (2021). MLP-Mixer: An all-MLP Architecture for Vision. ArXiv. Available at: https://arxiv.org/abs/2105.01601
  3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. et. al. (2021). An image is worth 16x16 words: transformers for image recognition at scale. ArXiv. Available at: https://arxiv.org/abs/2010.11929
  4. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H. (2021). Escaping the Big Data Paradigm with Compact Transformers. ArXiv. Available at: https://arxiv.org/abs/2104.05704
  5. Patches Are All You Need? (2021). Under review as a conference paper at ICLR 2022. Available at: https://openreview.net/pdf?id=TVHS5Y4dNvM
  6. Guo, M.-H., Liu, Z.-N., Mu, T.-J., Hu, S.-M. (2021). Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks. ArXiv. Available at: https://arxiv.org/abs/2105.02358
  7. Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontañón, S. (2021). FNet: Mixing Tokens with Fourier Transforms. ArXiv. Available at: https://arxiv.org/abs/2105.03824
  8. Liu, H., Dai, Z., So, D. R., Le, Q. V. (2021). Pay Attention to MLPs. ArXiv. Available at: https://arxiv.org/abs/2105.08050
  9. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ArXiv. Available at: https://arxiv.org/abs/2103.14030
  10. Denil, M., Shakibi, B., Dinh, L., Ranzato, M. A., Freitas, N. (2014). Predicting Parameters in Deep Learning. ArXiv. Available at: https://arxiv.org/abs/1306.0543
  11. Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., Guttag, J. (2020). What is the state of neural network pruning? ArXiv. Available at: https://arxiv.org/abs/2003.03033
  12. Han, S., Pool, J., Tran, J., Dally, W. J. (2015). Learning bothWeights and Connections for Efficient Neural Networks. ArXiv. Available at: https://arxiv.org/pdf/1506.02626v3.pdf
  13. LeCun, Y., Denker, J. S., Solla, S. A. (1990). Optimal Brain Damage. NIPS. Available at: http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
  14. Hinton, G., Vinyals, O., Dean, J. (2015). Distilling the knowledge in a neural network. NIPS Deep Learning and Representation Learning Workshop. ArXiv. Available at: https://arxiv.org/abs/1503.02531
  15. Li, C., Peng, J., Yuan, L., Wang, G., Liang, X., Lin, L., Chang, X. (2020). Block-Wisely Supervised Neural Architecture Search With Knowledge Distillation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: http://doi.org/10.1109/cvpr42600.2020.00206
  16. Aflalo, Y., Noy, A., Lin, M., Friedman, I., Zelnik, L. (2020). Knapsack Pruning with Inner Distillation. ArXiv. Available at: https://arxiv.org/abs/2002.08258
  17. Wang, Z., Li, F., Shi, G., Xie, X., Wang, F. (2020). Network pruning using sparse learning and genetic algorithm. Neurocomputing, 404, 247–256. doi: http://doi.org/10.1016/j.neucom.2020.03.082
  18. Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R. (2014). Exploiting linear structure within convolutional networks for efficient evaluation. Advances in Neural Information Processing Systems, 1269–1277.
  19. Li, Y., Gu, S., Mayer, C., Van Gool, L., Timofte, R. (2020). Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: http://doi.org/10.1109/cvpr42600.2020.00804
  20. Han, S., Mao, H., Dally, W. J. (2015). Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. ArXiv. Available at: https://arxiv.org/abs/1510.00149
  21. Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E. et. al. (2016). Going Deeper with Embedded FPGA Platform for Convolutional Neural Network. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. Monterey. doi: http://doi.org/10.1145/2847263.2847265
  22. Paupamah, K., James, S., Klein, R. (2020). Quantisation and Pruning for Neural Network Compression and Regularisation. 2020 International SAUPEC/RobMech/PRASA Conference. doi: http://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041096
  23. Louizos, C., Welling, M., Kingma, D. P. (2018). Learning sparse neural networks through l0 regularization. ICLR 2018. ArXiv. Available at: https://arxiv.org/abs/1712.01312
  24. Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., Sun, H. (2019). OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: http://doi.org/10.1109/cvpr.2019.00721
  25. Gomez, A. N., Zhang, I., Kamalakara, S. R., Madaan, D., Swersky, K., Gal, Y. et. al. (2019). Learning Sparse Networks Using Targeted Dropout. ArXiv. Available at: https://arxiv.org/abs/1905.13678
  26. Tabik, S., Peralta, D., Herrera-Poyatos, A., Herrera, F. (2017). A snapshot of image pre-processing for convolutional neural networks: case study of MNIST. International Journal of Computational Intelligence Systems, 10 (1), 555–568. doi: http://doi.org/10.2991/ijcis.2017.10.1.38
  27. Cireşan, D. C., Meier, U., Gambardella, L. M., Schmidhuber, J. (2010). Deep, Big, Simple Neural Nets for Handwritten Digit Recognition. Neural Computation, 22 (12), 3207–3220. doi: http://doi.org/10.1162/neco_a_00052
  28. Simard, P. Y., Steinkraus, D., Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings. San Mateo: IEEE Computer Society Press, 958–962. doi: http://doi.org/10.1109/icdar.2003.1227801
  29. Galchonkov, O., Nevrev, A., Glava, M., Babych, M. (2020). Exploring the efficiency of the combined application of connection pruning and source data pre­processing when training a multilayer perceptron. Eastern-European Journal of Enterprise Technologies, 2 (9 (104)), 6–13. doi: http://doi.org/10.15587/1729-4061.2020.200819
  30. LeCun, Y., Cortes, C., Burges, C. J. C. The mnist database of handwritten digits. Available at: http://yann.lecun.com/exdb/mnist/
  31. Brownlee, J. (2021). Weight Initialization for Deep Learning Neural Networks. Available at: https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
  32. Colab. Available at: https://colab.research.google.com/notebooks/welcome.ipynb

Downloads

Published

2022-02-28

How to Cite

Galchonkov, O., Nevrev, A., Shevchuk, B., & Baranov, N. (2022). Determination of the influence of the choice of the pruning procedure parameters on the learning quality of a multilayer perceptron. Eastern-European Journal of Enterprise Technologies, 1(9(115), 75–83. https://doi.org/10.15587/1729-4061.2022.253103

Issue

Section

Information and controlling system