Parametric synthesis of control systems for the steam generator of a nuclear power plant

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253126

Keywords:

nuclear power plant, steam generator, modeling, control system, synthesis, identification, optimization

Abstract

This paper proposes models and methods of the parametric synthesis of automatic control systems for a steam generator at a nuclear power plant, based on the modification of unconditional optimization methods. A mathematical model of steam generator control systems designed for the synthesis of model parameters has been considered. Algorithms are given for calculating level objective functions that take into consideration the limitations of variable parameters and quality indicators of problems for identifying and optimizing model parameters. The methods of unconditional optimization have been modified by introducing the operation of comparing the values of the level objective functions. Using the information technology of optimization, computational experiments were carried out to synthesize the parameters of the steam generator control systems by optimizing the level objective functions. The values of 54 parameters for the model of the control system in the PGV-1000 steam generator were identified, the value of standard deviation in the processes of 1 % from the experimental processes was achieved in the model. The result of parametric synthesis of optimal control systems for a steam generator produced a minimum control time of 131 seconds while the time of computational experiments did not exceed 10 minutes. The peculiarity of the proposed approach to the parametric synthesis of control system models is that the level objective function as a single mathematical object includes all the information about the synthesis problem. Therefore, a given approach is promising for simplifying software for solving complex problems of parametric synthesis of control systems. The considered technology of parametric synthesis of control systems could increase the degree of scientific validity of technical projects to improve various applied and promising control systems.

Author Biographies

Olena Nikulina, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Associate Professor

Department of Information Systems and Technologies

Valeriy Severin, National Technical University "Kharkiv Polytechnic Institute"

Doctor of Technical Sciences, Professor

Department of System Analysis and Information-Analytical Technologies

Nina Kotsiuba, National Technical University "Kharkiv Polytechnic Institute"

Assistant

Department of Information Systems and Technologies

References

  1. Yastrebenetsky, M. A., Kharchenko, V. (Eds.) (2014). Nuclear Power Plant Instrumentation and Control Systems for Safety and Security. IGI Global, 470. doi: https://doi.org/10.4018/978-1-4666-5133-3
  2. Yastrebenetsky, M. A., Kharchenko, V. S. (Eds.) (2020). Cyber Security and Safety of Nuclear Power Plant Instrumentation and Control Systems. IGI Global, 501. doi: https://doi.org/10.4018/978-1-7998-3277-5
  3. Kumar, V., Chandra Mishra, K., Singh, P., Narayan Hati, A., Rao Mamdikar, M., Kumar Singh, L., Ramakant Parida, R. N. (2022). Reliability analysis and safety model checking of Safety-Critical and control Systems: A case study of NPP control system. Annals of Nuclear Energy, 166, 108812. doi: https://doi.org/10.1016/j.anucene.2021.108812
  4. Umurzakova, D. M. (2020). Mathematical Modeling of Transient Processes of a Three-pulse System of Automatic Control of Water Supply to the Steam Generator When the Load Changes. 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). doi: https://doi.org/10.1109/dynamics50954.2020.9306117
  5. Hai, Z., Liang, L., Ying, Z. (2019). Modelling and simulation of water control system of vertical natural circulation steam generators. 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). doi: https://doi.org/10.1109/icemi46757.2019.9101693
  6. Umurzakova, D. (2021). System of automatic control of the level of steam power generators on the basis of the regulation circuit with smoothing of the signal. IIUM Engineering Journal, 22 (1), 287–297. doi: https://doi.org/10.31436/iiumej.v22i1.1415
  7. Xu, Z., Fan, Q., Zhao, J. (2020). Gain-Scheduled Equivalent-Cascade IMC Tuning Method for Water Level Control System of Nuclear Steam Generator. Processes, 8 (9), 1160. doi: https://doi.org/10.3390/pr8091160
  8. Kong, X., Zhang, J., Xiao, Y., Qian, L., Su, L., Chen, B., Xu, M. (2018). Performance optimization for steam generator level control based on a revised simultaneous perturbation stochastic approximation algorithm. 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG). doi: https://doi.org/10.1109/igbsg.2018.8393526
  9. Salehi, A., Safarzadeh, O., Kazemi, M. H. (2019). Fractional order PID control of steam generator water level for nuclear steam supply systems. Nuclear Engineering and Design, 342, 45–59. doi: https://doi.org/10.1016/j.nucengdes.2018.11.040
  10. Kumar, V., Singh, L. K., Singh, P., Singh, K. V., Maurya, A. K., Tripathi, A. K. (2018). Parameter Estimation for Quantitative Dependability Analysis of Safety-Critical and Control Systems of NPP. IEEE Transactions on Nuclear Science, 65 (5), 1080–1090. doi: https://doi.org/10.1109/tns.2018.2827106
  11. Nikulina, O. M., Severyn, V. P., Kotsiuba, N. V. (2020). Development of information technology for optimizing the control of complex dynamic systems. Bulletin of National Technical University "KhPI". Series: System Analysis, Control and Information Technologies, 2 (4), 63–69. doi: https://doi.org/10.20998/2079-0023.2020.02.11
  12. Bugrii, N. A., Bykovskii, P. N., Vasil’ev, S. V., Epifanov, S. V., Kolibas, G. V., Korablev, K. V. et. al. (2021). Integrated Modernization of Safety Control Systems and Normal Operation Systems of Unit 3 of Smolensk NPP. Atomic Energy, 129 (4), 222–226. doi: https://doi.org/10.1007/s10512-021-00737-4
  13. Demchenko, V. A. (2001). Avtomatizatsiya i modelirovanie tekhnologicheskih protsessov AES i TES. Odessa: Astroprint, 305.
  14. Demchenko, V. A., Todortsev, Yu. K., Lozhechnikov, V. F. (1999). Matematicheskaya model' uchastka pitaniya parogeneratora PGV-1000. Vestnik HGPU, 73, 133–138.
  15. Nikulina, E. N. (2010). Matematicheskie modeli sistem avtomaticheskogo upravleniya proizvoditel'nost'yu parogeneratora. Visnyk NTU «KhPI», 23, 71–79.
  16. Severin, V. P., Nikulina, E. N., Trubchanova, N. V. (2016). Identifikatsiya parametrov sistemy upravleniya proizvoditel'nost'yu parogeneratora energobloka AES. Visnyk NTU «KhPI», 15 (1187), 38–44. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/21775?locale=uk
  17. Domnin, I. F., Severin, V. P., Nikulina, E. N. (2014). Chislennye metody analiza i sinteza v radioelektronike. Kharkiv: NTU «KhPI», 164. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/43041/3/Book_2014_Domnin_Chislennye_metody.pdf
  18. Nikulina, E. N., Severin, V. P. (2009). Mnogokriterial'niy sintez sistem upravleniya reaktornoy ustanovki putem minimizatsii integral'nyh kvadratichnyh otsenok. Yaderna ta radiatsiyna bezpeka, 12 (2), 3–12. Available at: http://dspace.nbuv.gov.ua/handle/123456789/96764

Downloads

Published

2022-02-25

How to Cite

Nikulina, O. ., Severin, V. ., & Kotsiuba, N. (2022). Parametric synthesis of control systems for the steam generator of a nuclear power plant. Eastern-European Journal of Enterprise Technologies, 1(2(115), 77–84. https://doi.org/10.15587/1729-4061.2022.253126