Development of methods and models to improve the noise immunity of wireless communication channels

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253458

Keywords:

infocommunication system, electromagnetic compatibility, ultra-wide signal, noise immunity, signal/noise ratio

Abstract

It has been shown that existing methods and models for improving the noise immunity of communication channels are not capable of meeting requirements for the quality of information in mobile infocommunication systems. In addition, the compromised quality of information fails to protect it and provide the speed of information transmission and density of access channels.

It has been proven that reducing the level of electromagnetic radiation is the main method of ensuring noise immunity in wireless mobile communication systems of infocommunication systems. Therefore, one way to ensure the stable interference-free operation is to reduce the level of the information signal at the receiver input to the noise level when the signal/noise ratio is equal to one.

This paper reports the results of studying methods and models with correlation reception of ultra-wideband signals. It is proved that according to the level of potential noise immunity, the best indicators are shown by the model of encoding an ultra-wideband information signal by phase manipulation, followed by the coding model with opposite chips, and the code-time manipulation model.

It is shown that with a large base of the signal B>300 when the intensity of the received signals is below the level of interference, reliable transmission of information is carried out with a probability of error of less than 10-6. This proves that the use of ultra-wide signal technology allows for wireless hidden transmission of information with low radiation power and a low probability of error. Thus, at a speed of 12 Mb/s, it is possible to chain the transmission of information with a probability of error less than 10-6 if there is a large signal base used, B =500‒1000.

Supporting Agency

  • Цю роботу було профінансовано в рамках виконання договору про науково-дослідну роботу «Удосконалення методів та засобів оцінки рівня несприйнятливості електронного обладнання нових зразків військової техніки до впливу потужних електромагнітних завад» (ДР № 0121U109546, наказ НТУ «ХПІ» № 580 ОД від 14.12.21р.).

Author Biographies

Volodymyr Knyazev, Research and Design Institute “Molniya” of National Technical University “Kharkiv Polytechnic Institute”

PhD, Head of Research Department

Research Department of Electromagnetic Compatibility and Safety RD-2

Vladimir Kravchenko, Research and Design Institute “Molniya” of National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Chief Researcher

Research Department of Electromagnetic Compatibility and Safety RD-2

Bogdan Lazurenko, National Technical University “Kharkiv Polytechnic Institute”

Postgraduate Student

Department of Information Systems named V. O. Kravtsya

Oleksandr Serkov, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Information Systems named V. O. Kravtsya

Karyna Trubchaninova, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Department of Transport Communication

Nataliia Panchenko, Ukrainian State University of Railway Transport

Doctor of Economic Sciences, Professor

Department of Higher Mathematics and Physics

References

  1. Horbenko, I., Zamula, O., Lyk, Kh. Ch. (2020). Comprehensive solution to the problem of electromagnetic compatibility of modern information and communication systems. Radiotekhnika, 3 (202), 106–115. doi: https://doi.org/10.30837/rt.2020.3.202.11
  2. Kashmoola, M. A., Alsaleem, M. Y. anad, Alsaleem, N. Y. A., Moskalets, M. (2019). Model of dynamics of the grouping states of radio electronic means in the problems of ensuring electromagnetic compatibility. Eastern-European Journal of Enterprise Technologies, 6 (9 (102), 12–20. doi: https://doi.org/10.15587/1729-4061.2019.188976
  3. Moskalets, M., Loshakov, V., Abdenour, D., Ageyev, D., Martynchuk, O., Sielivanov, K. (2019). Methods for Solving EMC Problems by Means of Antenna Technolology in Tropospheric Communication. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). doi: https://doi.org/10.1109/picst47496.2019.9061532
  4. Serkov, A., Trubchaninova, K., Yakovenko, I., Kniaziev, V. (2020). Electromagnetic Compatibility of Mobile Telecommunication Systems. 2020 IEEE Ukrainian Microwave Week (UkrMW), 1041–1044, doi: https://doi.org/10.1109/UkrMW49653.2020.9252821
  5. Jaimes-Illanes, G. (2021). Planning and simulation for radio access networks on “Small Cells” technology for heterogeneous environments. Investigacion & desarrollo, 21 (1). doi: https://doi.org/10.23881/idupbo.021.1-2i
  6. Faruque, S. (2019). Radio Frequency Multiple Access Techniques Made Easy. SpringerBriefs in Electrical and Computer Engineering. doi: https://doi.org/10.1007/978-3-319-91651-4
  7. Grami, A. (2016). Introduction to Digital Communications. Academic Press. dоi: https://doi.org/10.1016/C2012-0-06171-6
  8. Zhu, D., Mathews, V. J., Detienne, D. H. (2015). Likelihood-based blind separation of QAM signals in time-varying dual-polarized channels. 2015 23rd European Signal Processing Conference (EUSIPCO). doi: https://doi.org/10.1109/eusipco.2015.7362512
  9. Ilcev, S. D. (2020). Analyses of Space Division Multiple Access (SDMA) Schemes for Global Mobile Satellite Communications (GMSC). TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 14 (4), 821–830. doi: https://doi.org/10.12716/1001.14.04.05
  10. Segan, S. (2022). CDMA vs. GSM: What's the Difference? Available at: https://www.pcmag.com/news/cdma-vs-gsm-whats-the-difference
  11. Khan, M. T., Sha’ameri, A. Z., Zabidi, M. M. A., Chia, C. C. (2021). FHSS Signals Classification by Linear Discriminant in a Multi-signal Environment. Proceedings of the International e-Conference on Intelligent Systems and Signal Processing, 143–155. doi: https://doi.org/10.1007/978-981-16-2123-9_11
  12. Rodimov, A. P., Popovskiy, V. V. (1984). Statisticheskaya teoriya polyarizatsionno-vremennoy obrabotki signalov i pomekh v liniyah svyazi. Moscow: Radio i cvyaz', 272.
  13. Zhang, L. (2021). The Simulation Study of Multi-User Spread-Spectrum Wireless Communication System. Journal of Physics: Conference Series, 1815 (1), 012021. doi: https://doi.org/10.1088/1742-6596/1815/1/012021
  14. Federal Communications Commission (FCC) Decision No. FCC 02-48. Available at: https://apps.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf
  15. Huang, T.-J. (2018). Analytical Investigation of Channel Capacity of UWB-MIMO Systems. International Journal of Communications, Network and System Sciences, 11 (01), 1–8. doi: https://doi.org/10.4236/ijcns.2018.111001
  16. Kotel'nikov, V. A. (1956). Teoriya potentsial'noy pomekhoustoychivosti. Moscow: Gosenergoizdat, 151. Available at: https://ikfia.ysn.ru/wp-content/uploads/2018/01/Kotelnikov1956ru.pdf
  17. Serkov, A., Trubchaninova, K., Mezitis, M. (2019). Method of wireless transmission of digital information on the basis of ultra-wide signals. Advanced Information Systems, 3 (4), 33–38. dоi: https://doi.org/10.20998/2522-9052.2019.4.04
  18. Trubchaninova, K. A. (2021). Modeli, metody ta tekhnolohiya bahatokanalnoho dostupu ta zakhystu informatsiyi v rukhomykh kompiuternykh systemakh. Kharkiv, 364.
  19. Panchenko, S., Serkov, O., Trubchaninova, K., Horiushkina, A., Lazurenko, B. (2020). Pat. No. 145319 UA. Method for receiving digital binary signals under noise conditions. No. u202004847; declareted: 29.07.2020; published: 25.11.2020, Bul. No. 22. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=272722

Downloads

Published

2022-02-25

How to Cite

Knyazev, V., Kravchenko, V., Lazurenko, B., Serkov, O., Trubchaninova, K., & Panchenko, N. (2022). Development of methods and models to improve the noise immunity of wireless communication channels. Eastern-European Journal of Enterprise Technologies, 1(5(115), 35–42. https://doi.org/10.15587/1729-4061.2022.253458

Issue

Section

Applied physics