Technology for obtaining high-pure magnesium compounds using the hydrolytic processes of sedimentation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253544

Keywords:

magnesium compounds, alkaline hydrolysis of magnesium chloride, magnesium hydroxide, sorption of metalions

Abstract

In nature, magnesium compounds are distributed in the form of such minerals as dolomite, magnesite, serpentinite, brucite, and in the form of such solutions as sea and ocean waters, salt lakes, bischofite. The main popular magnesium compounds are its chloride, hydroxide, and oxide. The most common technology for obtaining magnesium hydroxide is based on the action of alkaline reagents on solutions of magnesium. However, the technology has significant drawbacks. The main issue is that magnesium hydroxide cannot be obtained free of impurity metal ions, and the sediment itself has an extremely low filtration rate from the solution in which it is formed.

Magnesium hydroxide is an excellent sorbent collector for the ions of most metals, so it is possible to utilize this property of absorption of magnesium hydroxide to produce other highly pure compounds, for medicine and pharmacopeia. This paper investigates the processes of alkaline hydrolysis of magnesium chloride and the formation of magnesium hydroxide sediment, the kinetics of processes, as well as the properties of sediments. Empirical formulas for sediment production parameters with a high filtration coefficient that exceeds the known values of 1·106have been derived. The study reported here hasrevealed the possibility of obtaining in a relatively simple way highly pure chloride, hydroxide, and magnesium oxide, sodium chlorides, potassium, calcium, in which the impurity 3d metals content does not exceed the value as a percentage of (1‒4)·10-7. Due to the properties of highly pure magnesium compounds to the sorption of metal ions, it is possible to create reference samples of chemical elements for the needs of metrology. For example, to create MR phantoms to verify measurements and check the operation of magnetic resonance imaging (MRI) in medical institutions. Especially pure magnesium hydroxide can be used for instrumental methods of analytical chemistry (X-ray fluorescent, neutron-activation methods) when fabricating chemical references for testing laboratories.

Supporting Agency

  • Автори висловлюють щиру подяку доктору хімічних наук, професору Антоновичу Валерію Павловичу за його привертання уваги щодо актуальності проведених досліджень та дружні поради, а також викладачу, магістру Сичову Вячеславу Михайловичу, який прийняв активну участь у оформлені рисунків статті згідно вимог редакції.

Author Biographies

Mikhail Sichov, State University of Intelligent Technologies and Communications

PhD, Associate Professor

Department of Metrology and Information and Measuring Technology

Kostiantyn Boriak, State University of Intelligent Technologies and Communications

Doctor of Technical Sciences, Professor

Department of Metrology and Information and Measuring Technology

Leonid Kolomiets, State University of Intelligent Technologies and Communications

Doctor of Technical Sciences, Professor

Department of Standardization, Conformity Assessment and Educational Measurements

References

  1. Pozin, M. E. (1974). Tehnologiya mineral'nyh soley (udobreniy, pesticidov, promyshlennyh solej, okislov i kislot). Ch. 1. Leningrad: Himiya, 792.
  2. Gidroksid magniya v tehnologii XXI veka. Available at: https://polit.ru/article/2015/07/07/nikohim/
  3. Gidroksid magniya: tehnologii i proizvodstvo (2008). Evraziyskiy himicheskiy rynok, 3 (39), 102–119. Available at: http://www.chemmarket.info/files/demo_articles/demo_article_1236357268.pdf
  4. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  5. Akchurin, T. K., Savchenko, A. V., Drobin, I. Ju. (2019). Izuchenie processa osazhdenie gidroksida magniya iz bishofita. Sbornik statey mezhdunarodnoy nauchno-prakticheskoy konferencii: aktual'nye problemy i perspektivy razvitiya stroitel'nogo kompleksa. Volgogradskiy gosudarstvennyi tehnicheskiy universitet, 253–257. Available at: https://www.elibrary.ru/item.asp?id=41745295
  6. PNST 65-2015. Nanostructured magnesium hydroxide. Specifications. Available at: https://docs.cntd.ru/document/1200130786
  7. Matsukevich, I. V., Krutko, N. P., Ovseenko, L. V., Polhovskaja, O. V., Hubitski, D. V., Vashook, V. V. (2018). Effect of preparation method on physicochemical properties of nanostructured MgO powder. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 54 (3), 281–288. doi: https://doi.org/10.29235/1561-8331-2018-54-3-281-288
  8. Ruchec, A. N., Besarab, S. V., Macukevich, I. V. Adsorbcionnye svojstva nanostrukturirovannyh poroshkov Mg(OH)2 i MgO. Available at: https://rep.bntu.by/bitstream/handle/data/40450/Adsorbcionnye_svojstva_nanostrukturirovannyh_poroshkov_Mg_OH_2_I_MgO.pdf
  9. Umar, A., Hahn, Y.-B. (2010). Metal Oxide Nanostructures and Their Applications. American Scientific Publishers. Available at: https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=788438
  10. Saoud, K. M., Saeed, S., Al-Soubaihi, R. M., Bertino, M. F. (2014). Microwave Assisted Preparation of Magnesium Hydroxide Nano-sheets. American Journal of Nanomaterials, 2 (2), 21–25. Available at: http://www.sciepub.com/abstract/abstract.aspx?id=AJN&num=3109
  11. Belyaev, S. N., Panteleev, S. V., Ignatov, S. K., Razuvaev, A. G. (2016). Structural, electronic, thermodynamic and spectral properties of Mgn (n=2–31) clusters. A DFT study. Computational and Theoretical Chemistry, 1079, 34–46. doi: https://doi.org/10.1016/j.comptc.2016.01.011
  12. Au, M. (2005). Hydrogen storage properties of magnesium based nanostructured composite materials. Materials Science and Engineering: B, 117 (1), 37–44. doi: https://doi.org/10.1016/j.mseb.2004.10.017
  13. Snehyrov, V. P., Iakovlieva, L. V., Snehyrova, D. V., Almacaeva, L. G. (2017). Magnesium compounds: medicines, their consumption and prospects of a new drug production part 1. 100 magnesium containing medicines of the ukrainian pharma-ceutical market. Vestnik farmacii, 4 (78). Available at: https://vestnik-pharm.vsmu.by/rezyume/vestnik-farmatsii-2017-4-78
  14. Renthenofluorestsentnyi analiz. Available at: https://www.laboratuar.com/uk/testler/kimyasal-testler/x-ray-floresan-analizi/
  15. Kolomiets, L. V., Sychev, М. І., Boriak, K. F. (2016). Method of preparation phantom for calibration of magnetic resonance equipment. Collection of scientific works of the Odesa State Academy of Technical Regulation and Quality, 2 (9), 45–47. doi: https://doi.org/10.32684/2412-5288-2016-2-9-45-47
  16. Metody koncentrirovaniya veshhestv v analiticheskoy himii (2005). Trudy komisii po analiticheskoy himii. Vol. 25. Moscow: Izd-vo AN RF, 394.
  17. Chursin, V. I., Panfilov, E. V. (2019). Precipitation of chromium-containing tanning solution of suspension magnesium hydroxide. Izvestiya vysshikh uchebnykh zavedenii khimiya khimicheskaya tekhnologiya, 62 (9), 110–116. doi: https://doi.org/10.6060/ivkkt.20196209.5918
  18. Komarov, V. S. (2013). Nauchnye osnovy sinteza adsorbentov. Minsk: Belarus. navuka, 181.
  19. Khazyn, E. F., Konopchuk, T. Y., Horonovskyi, Y. F., Sheka, Y. A. (1980). Nauchni osnovy syntezu sorbentiv. Ukrainskyi khimichnyi zhurnal, 46 (7), 720.
  20. Mirzakulov, K., Bobokulova, O., Tojiev, R. (2017). Research of processes of evaporation and filtrations cleared leaches of lakes Karaumbet and Barsakelmes. Universum: tehnicheskie nauki: elektron. nauchn. zhurn., 8 (41). Available at: https://7universum.com/ru/tech/archive/item/5059
  21. Husnutdinov, V. A. (2000). Fiziko-himicheskie osnovy tehnologii pererabotki netradicionnogo magnezial'nogo syr'ja na chistyi oksid i drugie soedineniya magniya. Kazan'. Available at: https://www.dissercat.com/content/fiziko-khimicheskie-osnovy-tekhnologii-pererabotki-netraditsionnogo-magnezialnogo-syrya-na-c
  22. Vasserman, I. M. (1980). Himicheskoe osazhdenie iz rastvorov. Leningrad: Himiya, 207.
  23. Kudrjavcev, P. G. (2018). Gomogennoe osazhdenie gidratirovannogo oksida i ego primenenie dlya polucheniya kompozicionnyh materialov. Inzhenerniy vestnik Dona, 3. Available at: http://ivdon.ru/uploads/article/pdf/IVD_267_Kudryavtsev.pdf_9b3d7015de.pdf
  24. Gomogennoe osazhdenie. Spravochnik himika. Vol. 21. Himiya i himicheskaya tehnologiya. Available at: https://www.chem21.info/info/9925/
  25. Vinogradova, E. N. (1951). Vliyanie temperatury i koncentracii soli na rN pri osazhdenii gidroksida magniya. Trudy komisii po analiticheskoy himii. Vol. III (V. I0). Moscow: Izd-vo AN SSSR, 138–145.
  26. Lur'e, Ju. Ju. (1979). Spravochnik po analiticheskoy himii. Moscow: Himiya, 480.
  27. Enander, I., Villadsen, J. V., Sillén, L. G., Sillén, L. G., Zaar, B., Diczfalusy, E. (1958). Experiments with Methyl-fluoro-phosphorylcholine-inhibited Cholinesterase. Acta Chemica Scandinavica, 12, 780–781. doi: https://doi.org/10.3891/acta.chem.scand.12-0780
  28. Juhnevich, G. V. (1973). Infrakrasnaja spektroskopiya vody. Moscow: Nauka, 208.
  29. Vedeneev, V. I., Gurvich, L. V., Kondrat'ev, V. N. i dr. (1962). Energiya razryva himicheskih sviazey. Leningrad: Izd-vo AN SSSR, 215.
  30. Lazareva, A. I., Bulavina, M. O. (Eds.) (1980). Kolebaniya okisnyh reshetok. Moscow: Nauka, 365.
  31. Balicheva, T. G., Lobaneva, O. A. (1983). Jelektronnye i kolebatel'nye spektry neorganicheskih i koordinacionnyh soedineniy. Leningrad: Izd vo LGU, 117.
  32. Kolin'ko, P. A., Kozlov, D. V. (2013). Himicheskaya kinetika v kurse fizicheskoy himii. Novosibirsk, 99. Available at: https://nsu.ru/xmlui/bitstream/handle/nsu/712/Химическая%20кинетика%20в%20курсе%20физической%20химии.pdf?sequence=3&isAllowed=y

Downloads

Published

2022-02-28

How to Cite

Sichov, M., Boriak, K., & Kolomiets, L. (2022). Technology for obtaining high-pure magnesium compounds using the hydrolytic processes of sedimentation . Eastern-European Journal of Enterprise Technologies, 1(6(115), 43–52. https://doi.org/10.15587/1729-4061.2022.253544

Issue

Section

Technology organic and inorganic substances