Analysis of the effect of biomass variants (fish waste, tamanu waste and duckweed) on the characteristics of syngas, bio oil, and carbon charcoal produced in the pyrolysis process

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253750

Keywords:

renewable energy, biomass, fish waste, tamanu waste, duckweed, pyrolysis, syngas, bio-oil, carbon charcoal, economy value

Abstract

Biomass is one of the renewable energy sources that are often found around the Indonesia area. It can be converted into various forms of fuel by pyrolysis. Pyrolysis is a process of chemical decomposition of biomass through a heating process at high temperatures that occurs with no or little oxygen. The purpose of this study was to analyze the effect of the type of biomass on the characteristics of syngas, bio oil and carbon charcoal produced in pyrolysis.

Syngas consisting of hydrogen and carbon monoxide can be used as raw materials for the chemical industry in addition to electrical energy, such as methanol, formic acid and ammonia industries. Bio-oil contains a number of chemical compounds that have the potential as raw materials for preservatives, antioxidants, disinfectants, or as biopesticides. Carbon charcoal is useful as an energy source, activated carbon with higher economic value such as catalysts, adsorbents, and supercapacitors.

This research used an experimental method. Biomass comes from fish waste, tamanu waste, and duckweed. The parameters observed were temperature of 400–500 °C, for 30 minutes, and 150 grams biomass, in order to determine the duration of the syngas flame and the amount of bio-oil and carbon charcoal. The syngas produced from duckweed has a longer flame test with a time of 126 seconds with a blue flame while the syngas from tamanu waste produces a reddish blue flame for 18 seconds. On the other hand, the results of the bio-oil produced from fish waste, 19.1 grams are weightier than from duckweed, 3.2 grams. Then the most carbon charcoal is produced by tamanu waste weighing 141.9 grams while the least is produced by duckweed weighing 27.7 grams

Supporting Agency

  • Authors would like to thank to Direktorat Jenderal Pendidikan Tinggi, Riset, dan Teknologi Kementerian Pendidikan, Kebudayaan, Riset, Dan Teknologi Republik Indonesia for funding this research through Matching Fund 2021 Program which is initiated by Kedaireka.

Author Biographies

Adi Syuriadi, Politeknik Negeri Jakarta; Universitas Indonesia

Master of Engineering, Lecturer

Department of Mechanical Engineering

Ahmad Indra Siswantara, Universitas Indonesia

Doctor of Engineering, Lecturer

Department of Mechanical Engineering

Fadia Ramadhania Nurhakim, Politeknik Negeri Jakarta

Student of Power Plant Study Program

Department of Mechanical Engineering

Yubdina Nurfazlia Irbah, Politeknik Negeri Jakarta

Student of Power Plant Study Program

Department of Mechanical Engineering

Bagas Al Rizky, Politeknik Negeri Jakarta

Student of Power Plant Study Program

Department of Mechanical Engineering

Fara Arinda Zulfa, Politeknik Negeri Jakarta

Student of Power Plant Study Program

Department of Mechanical Engineering

Faisal Azizi Devitra, Politeknik Negeri Jakarta

Student of Power Plant Study Program

Department of Mechanical Engineering

Sulaksana Permana, Gunadarma University; Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials

Department of Mechanical Engineering

Centre of Mineral Processing and Corrosion Research

Department of Metallurgy and Materials

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

References

  1. Menteri Arifin: Transisi Energi Mutlak Diperlukan (2020). Kementerian Energi dan Sumber Daya Mineral. Available at: https://ebtke.esdm.go.id/post/2020/10/22/2667/menteri.arifin.transisi.energi.mutlak.diperlukan
  2. Basu, P. (2010). Biomass Gasification and Pyrolysis. Practical Design and Theory. Elsevier, 376.
  3. Tangsathitkulchai, C., Punsuwan, N., Weerachanchai, P. (2019). Simulation of Batch Slow Pyrolysis of Biomass Materials Using the Process-Flow-Diagram COCO Simulator. Processes, 7 (11), 775. doi: https://doi.org/10.3390/pr7110775
  4. Czajczyńska, D., Nannou, T., Anguilano, L., Krzyżyńska, R., Ghazal, H., Spencer, N., Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. doi: https://doi.org/10.1016/j.egypro.2017.07.275
  5. Aschjem, C. W. S. (2019). Modeling and optimization of pyrolysis reactors. Nor. Univ. life Sci., 20.
  6. Fadhil, A. B., Ahmed, A. I., Salih, H. A. (2017). Production of liquid fuels and activated carbons from fish waste. Fuel, 187, 435–445. doi: https://doi.org/10.1016/j.fuel.2016.09.064
  7. Muradov, N., Fidalgo, B., Gujar, A. C., T-Raissi, A. (2010). Pyrolysis of fast-growing aquatic biomass – Lemna minor (duckweed): Characterization of pyrolysis products. Bioresource Technology, 101 (21), 8424–8428. doi: https://doi.org/10.1016/j.biortech.2010.05.089
  8. Odeh, A. O. (2017). Pyrolysis: Pathway to Coal Clean Technologies. Pyrolysis. doi: https://doi.org/10.5772/67287
  9. Rajamohan, S., Kasimani, R. (2018). Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends. Environmental Science and Pollution Research, 25 (10), 9523–9538. doi: https://doi.org/10.1007/s11356-018-1241-x
  10. Cheng, J. J., Stomp, A.-M. (2009). Growing Duckweed to Recover Nutrients from Wastewaters and for Production of Fuel Ethanol and Animal Feed. CLEAN - Soil, Air, Water, 37 (1), 17–26. doi: https://doi.org/10.1002/clen.200800210
  11. Hammouda, O., Gaber, A., Abdel-Hameed, M. S. (1995). Assessment of the effectiveness of treatment of wastewater-contaminated aquatic systems with Lemna gibba. Enzyme and Microbial Technology, 17 (4), 317–323. doi: https://doi.org/10.1016/0141-0229(94)00013-1
  12. Appenroth, K.-J., Krech, K., Keresztes, Á., Fischer, W., Koloczek, H. (2010). Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere, 78 (3), 216–223. doi: https://doi.org/10.1016/j.chemosphere.2009.11.007
  13. Prasad, M. N. V., Malec, P., Waloszek, A., Bojko, M., Strzałka, K. (2001). Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161 (5), 881–889. doi: https://doi.org/10.1016/s0168-9452(01)00478-2
  14. Bairagi, A., Sarkar Ghosh, K., Sen, S. K., Ray, A. K. (2002). Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresource Technology, 85 (1), 17–24. doi: https://doi.org/10.1016/s0960-8524(02)00067-6
  15. Dweck, A. C., Meadows, T. (2002). Tamanu (Calophyllum inophyllum) - the African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 24 (6), 341–348. doi: https://doi.org/10.1046/j.1467-2494.2002.00160.x
  16. Heyne, K. (1987). Tumbuhan berguna Indonesia. Jakarta: Yayasan Sarana Wana Jaya.
  17. Soerawidjaja, T. (2006). Fondasi-Fondasi Ilmiah dan Keteknikan dari Teknologi Pembuatan Biodiesel. Handout Seminar Nasional; BiodieselSebagai Energi Alternatif Masa Depan, UGM Yogyakarta.
  18. Alamsyah, R., Lubis, E. H. (2012). Pengolahan Biodiesel dari Biji Nyamplung (Calophyllum Inophyllum L) Dengan Cara Purifikasi Kering. Jurnal Kimia Dan Kemasan, 34 (2), 287. doi: https://doi.org/10.24817/jkk.v34i2.1865

Downloads

Published

2022-06-30

How to Cite

Syuriadi, A., Siswantara, A. I., Nurhakim, F. R., Irbah, Y. N., Al Rizky, B., Zulfa, F. A., Devitra, F. A., Permana, S., & Susanto, I. (2022). Analysis of the effect of biomass variants (fish waste, tamanu waste and duckweed) on the characteristics of syngas, bio oil, and carbon charcoal produced in the pyrolysis process . Eastern-European Journal of Enterprise Technologies, 3(6(117), 41–46. https://doi.org/10.15587/1729-4061.2022.253750

Issue

Section

Technology organic and inorganic substances