Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises
DOI:
https://doi.org/10.15587/1729-4061.2022.254500Keywords:
ignition of materials, gas environment of premises, amplitude instant spectrum, phase instantaneous spectrumAbstract
This paper theoretically substantiates research into the spectral features of the dynamics of the main dangerous parameters of a gas environment when igniting materials in a laboratory chamber. Studying such spectral features is based on the calculation of the direct discrete Fourier transform for discrete measurements, equal in number, over the current intervals of observation of the hazardous examined parameter of the gas medium before and after the material is ignited. In this approach, a Fourier discrete transform makes it possible to determine the instantaneous amplitude and phase spectra for the time intervals under consideration. This makes it possible to explore the peculiarities of the distribution of amplitudes and phases of harmonic components in the spectrum of the dynamics of dangerous parameters of the gas environment before and after the ignition of materials. The results of experimental studies established that the nature of the amplitude spectrum is low-informative and not sensitive enough to fires. The main contribution to the amplitude spectrum of the dynamics of the investigated hazardous parameters of the gas environment in the chamber is made by the frequency components in the range of 0–0.2 Hz. The contribution to the amplitude spectrum of frequency components over 0.2 Hz is insignificant and decreases with increasing frequency. It is established that from the phase spectrum, the nature of the random scattering of phases for frequency components exceeding 0.2 Hz is informative. It was found that the nature of the phase spread for these frequency components in the spectrum depends on the type of ignition material. The results reported here could prove useful when devising new effective technologies for detecting fires in the premises of objects in various fields to protect against fires. This is explained by the fact that for the detection of fires in the premises, high-frequency components are important, characterized by the increase in dangerous parameters of the gas environment
References
- Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
- Tan, P., Steinbach, M., Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, 864.
- Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
- Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
- Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
- Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865
- Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
- Reproduced with permission from fire loss in the United States during 2019 (2020). National Fire Protection Association.
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
- Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
- Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
- Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
- Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
- Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
- Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
- Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
- BS EN 54-30:2015. Fire detection and fire alarm systems. Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors. doi: https://doi.org/10.3403/30266860
- BS EN 54-31:2014. Fire detection and fire alarm system. Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors. doi: https://doi.org/10.3403/30256418u
- ISO 7240-8:2014. Fire detection and alarm systems. Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor. doi: https://doi.org/10.3403/30280584
- Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE Sensors Journal, 5 (5), 1050–1056. doi: https://doi.org/10.1109/jsen.2005.845207
- Chen, S.-J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety Journal, 42 (8), 507–515. doi: https://doi.org/10.1016/j.firesaf.2007.01.006
- Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Brahim-Belhouari, S. (2008). A Committee Machine Gas Identification System Based on Dynamically Reconfigurable FPGA. IEEE Sensors Journal, 8 (4), 403–414. doi: https://doi.org/10.1109/jsen.2008.917124
- Skinner, A. J., Lambert, M. F. (2006). Using Smart Sensor Strings for Continuous Monitoring of Temperature Stratification in Large Water Bodies. IEEE Sensors Journal, 6 (6), 1473–1481. doi: https://doi.org/10.1109/jsen.2006.881373
- Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A Single-Chip CMOS Smoke and Temperature Sensor for an Intelligent Fire Detector. IEEE Sensors Journal, 9 (8), 914–921. doi: https://doi.org/10.1109/jsen.2009.2024703
- Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131.
- Zhang, D., Xue, W. (2010). Effect of Heat Radiation on Combustion Heat Release Rate of Larch. Journal of West China Forestry Science, 39, 148.
- Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
- Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
- McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology.
- Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator. User’s Guide. V. 6. National Institute of Standard and Technology.
- Polstiankin, R. M., Pospelov, B. B. (2015). Stochastic models of hazardous factors and parameters of a fire in the premises. Problemy pozharnoy bezopasnosti, 38, 130–135.
- Heskestad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. doi: https://doi.org/10.1016/0379-7112(92)90024-7
- Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et. al. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180-02-8602. Naval Research Laboratory.
- Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: https://doi.org/10.15587/1729-4061.2017.117789
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Boris Pospelov, Evgenіy Rybka, Mikhail Samoilov, Ihor Morozov, Yuliia Bezuhla, Tetiana Butenko, Yuliia Mykhailovska, Oleksandr Bondarenko, Julia Veretennikova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.