Creation of a hybrid power plant operating on the basis of a gas turbine engine

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.255451

Keywords:

hybrid power system, gas turbine engine, greenhouse, thermal energy, electric energy, humus soil

Abstract

This paper considers the issue related to the use of jet gas turbine engines for the generation of thermal and electrical energy, defined as a hybrid energy system powered by biogas. Revealing the main vulnerable points of the use and operation of these systems, it is proposed to use biogas obtained from agricultural, crop and livestock waste as fuel for gas turbine engines.

Analyzing the work of gas turbine engines, it reveals not only the technological advantages of using biogas instead of fuel, but also reducing the cost of heat and electric energy obtained by obtaining a productive land biohumus. This will result, firstly, it is especially emphasized, the usefulness of the resulting ground humus as a waste material, when producing biogas as fuel, for the operation of a hybrid energy system operating on the basis of gas turbine engines. Secondly, during the operation of a hybrid power system, it is possible to simultaneously obtain thermal and electrical energy. Thirdly, the low cost of the heat and electric energy received.

The following are other useful applications of such a power system. The resulting thermal energy is used for heating the greenhouse, and the electrical energy obtained from the operation of the hybrid power system can be used not only for lighting the premises, but can be used for the needs of the greenhouse. It is shown that the proposed hybrid power system consists of two technological structures. The first design is to obtain fuel in the form of biogas for the operation of gas turbine engines, the second design is the connection of the first design with gas turbine engines. A schematic diagram of the general design of the proposed hybrid power system and the principle of its operation is proposed. The difficulties encountered in the design and operation of such hybrid power systems are noted

Author Biographies

Nassim Rustamov, Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish– Kazakh University

Doctor of Technical Sciences

Department of Electrical Engineering

Oksana Meirbekova, Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish– Kazakh University

Senior Lecturer

Department of Electrical Engineering

Аdylkhan Kibishov, Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish– Kazakh University

Lecturer

Department of Electrical Engineering

Shokhrukh Babakhan, Khoja Akhmet Yassawi International Kazakh–Turkish/ Turkish– Kazakh University

Lecturer

Department of Electrical Engineering

Аskhat Berguzinov, Toraighyrov University

PhD, Associate Professor

Department of Heat Power Engineering

References

  1. Yudaev, I., Daus, Yu., Gamaga, V. (2020). Vozobnovlyaemye istochniki energii. Moscow: Izd. Lan', 328. Available at: https://cdn1.ozone.ru/s3/multimedia-l/6086254689.pdf
  2. Rustamov, N. T. (2014). O sozdanii gibridnykh energeticheskikh sistem, ispol'zuyuschikh vozobnovlyaemye istochniki energii (VIE). Vestnik Natsional'noy inzhenernoy akademii Respubliki Kazakhstan, 4 (54), 114–116.
  3. Odoi-Yorke, F., Owusu, J. J., Atepor, L. (2022). Composite decision-making algorithms for optimisation of hybrid renewable energy systems: Port of Takoradi as a case study. Energy Reports, 8, 2131–2150. doi: https://doi.org/10.1016/j.egyr.2022.01.118
  4. Berrada, A., Loudiyi, K., El Mrabet, R. (2021). Introduction to hybrid energy systems. Hybrid Energy System Models, 1–43. doi: https://doi.org/10.1016/b978-0-12-821403-9.00001-9
  5. Kavadias, K., Triantafyllou, P. (2022). Wind-Based Stand-Alone Hybrid Energy Systems. Comprehensive Renewable Energy, 749–793. doi: https://doi.org/10.1016/b978-0-12-819727-1.00162-x
  6. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S. R., Adnan, M. et. al. (2018). Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy, 148, 208–234. doi: https://doi.org/10.1016/j.energy.2018.01.133
  7. Sawle, Y., Gupta, S. C., Bohre, A. K. (2017). Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique. Energy Procedia, 117, 690–698. doi: https://doi.org/10.1016/j.egypro.2017.05.183
  8. Musa, G., Alrashed, M., Muhammad, N. M. (2021). Development of big data lean optimisation using different control mode for Gas Turbine engine health monitoring. Energy Reports, 7, 4872–4881. doi: https://doi.org/10.1016/j.egyr.2021.07.071
  9. Twaha, S., Ramli, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320–331. doi: https://doi.org/10.1016/j.scs.2018.05.027
  10. Aliyarov, B. K. (Ed.) (2009). Analiticheskoe issledovanie «Kazakhstan: Energeticheskaya bezopasnost', energeticheskaya nezavisimost' i ustoychivost' razvitiya energetiki. Sostoyanie i perspektivy». Almaty, 370.
  11. Korneev, V. M. (2019). Teoriya gazoturbinnykh dvigateley. Litagent Ridero.
  12. Rustamov, N. T., Konusov, B. R., Rustamov, E. N. (2013). Sozdanie gibridnogo istochnika energii. Vestnik MKTU im. A. Yasaui, 1 (81), 69–72.
  13. Rustamov, N. T., Meyrbekov, A. T., Meyrbekov, S. A., Konusov, B. R. (2015). Pat. No. 29833 RK. Bioenergeticheskaya ustanovka.
  14. Medovschikov, Yu. V. (2018). Osnovy teplovykh dvigateley vnutrennego sgoraniya. Moscow, 105.
  15. Rustamov, N. T., Meyrbekov, A. T., Salikhova, G. Kh., Tastekov, N. K., Asilbaeva, A. P. (2021). Pat. No. 6070 RK. Gibridnaya stantsiya teploelektricheskoy energii.
  16. Rustamov, N. T., Meirbekova, O. D. (2021). Gibridnaya agroteploelektricheskaya stantsiya. Materialy III mezhdunarodnoy nauchno-prakticheskaya online konferentsii «Energo- i resursosberegayuschie tekhnologii: opyty i perspektivy». Kyzylorda, 29–33.
  17. Rustamov, N. T., Meyrbekov, A. T., Meirbekova, O. D. (2022). Pat. No. 6797 RK. Sposob vsesezonnogo elektrosnabzheniya teplitsy iz al'ternativnogo istochnika energii.
  18. Erokhin, B. T. (2015). Teoriya i proektirovanie raketnykh dvigateley. Moscow, 608.
  19. Damenov, E. A., Rustamov, N. T. (2018). Sozdanie gibridnykh energeticheskikh sistem. Tekhnika. Tekhnologii. Inzheneriya, 2, 33–35. Available at: https://moluch.ru/th/8/archive/85/3222/
  20. Kazandzhan, P. K. et. al. (2019). Teoriya reaktivnykh dvigateley. Book on Demand Ltd., 302.

Downloads

Published

2022-04-30

How to Cite

Rustamov, N., Meirbekova, O., Kibishov А., Babakhan, S., & Berguzinov А. (2022). Creation of a hybrid power plant operating on the basis of a gas turbine engine . Eastern-European Journal of Enterprise Technologies, 2(8 (116), 29–37. https://doi.org/10.15587/1729-4061.2022.255451

Issue

Section

Energy-saving technologies and equipment