Development of the regulation of hydrobiological monitoring in circulation cooling system of the Zaporizhzhia nuclear power plant

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.255537

Keywords:

Zaporizhzhia nuclear power plant, hydraulic structures, environmental factors, biocirculation problem, hydrobiological monitoring, bioreclamation

Abstract

The article proposes a new approach to solving the problem of biofouling at the facilities of the circulating cooling system of the Zaporizhzhia Nuclear Power Plant (ZNPP) by regulating hydrobiological studies. In the course of the studies, 4 species of hydrobionts were found that formed massive fouling on water supply facilities: filamentous algae Oedogonium sp. and Ulotrix zonata with a total biomass of 123.6±18.44 g/m2, tropical molluscs Melanoides tuberculata and Tarebia granifera of the Thiaridae family with a biomass of 20.09 g/m2. The shells of dead mollusks drifted along the pipes of the circulation system with the flow of water and interfered with the operation of pumping stations. Also, the blue-green algae Microcystis aeruginosa, which dominated the phytoplankton of the cooling pond, belonged to the potential bio-hindrances. The hydrobiological regulation was developed with the aim of timely detection of hydrobionts capable of active reproduction and creation of biological obstacles. It provides for four types of monitoring: current (operational), extreme (control), deployed (research) and background (hydrobiological monitoring of the Kakhovka reservoir in the zone of influence of waste warm waters). For each type of monitoring, the subjects of control (a group of hydrobionts), control parameters (species composition, abundance, biomass) and frequency of control are determined.
The regulation of hydrobiological monitoring makes it possible to minimize the consequences or prevent the occurrence of accidents and emergencies in the operation of the ZNPP cooling circulation systems associated with biological obstacles, and can be used as an example for solving similar problems at other power facilities. The article also contains practical recommendations for improving the ecological state of the cooling pond and preventing the massive development of dangerous aquatic organisms by introducing biomeliorator fish with a different food spectrum into the reservoir

Author Biographies

Natalia Yesipova, Oles Honchar Dnipro National University

PhD, Associate Professor

Department of General Biology and Aquatic Bioresources

Oleh Marenkov, Oles Honchar Dnipro National University

PhD, Associate Professor

Department of General Biology and Aquatic Bioresources

Tatiana Sharamok, Oles Honchar Dnipro National University

PhD, Associate Professor

Department of General Biology and Aquatic Bioresources

Oleh Nesterenko, Oles Honchar Dnipro National University

Postgraduate Student

Department of General Biology and Aquatic Bioresources

Viktoriia Kurchenko, Oles Honchar Dnipro National University

Postgraduate Student

Department of General Biology and Aquatic Bioresources

References

  1. Romanenko, V., Kuzmenko, M., Afanasyev, S. et. al. (2012). Hydroecological Safety of Nuclear Power Engineering in Ukraine. Visnik Nacional’noi’ Akademii’ Nauk Ukrai’ni, 6, 41–51. doi: https://doi.org/10.15407/visn2012.06.041
  2. Grohmann, А. Р. (2008). Bioencrustration in the turbine cooling system at the funil hydroelectric power plant, Itatiaia, Rio de Janeiro, Brazil. Naturalia, 31, 16–21. Available at: https://www.periodicos.rc.biblioteca.unesp.br/index.php/naturalia/article/view/1212
  3. Zvyagintsev, A. Y., Poltarukha, O. P., Maslennikov, S. I. (2015). Fouling on technical water supply marine systems and protection method analysis of fouling on water conduits (analytical review). Voda: khimiya i ekologiya, 1, 37–60. Available at: https://www.researchgate.net/publication/339696835
  4. Samoilenko, V. M., Svirid, А. А. (2014). Long-term changes in phytoplankton of cooling pond. Al'gologiya, 24 (3), 371–375. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/81407/28-Samoilenko.pdf?sequence=1
  5. Krahzan, S., Protasov, A., Bazaeva, A., Grygorenko, T., Sylaeva, A. (2011). Hydrobiological state of cooling reservoir of the Khmelnitsky nuclear power plant during autumn period. Rybohospodarska nauka Ukrainy, 3 (17), 29–35. Available at: https://fsu.ua/index.php/uk/2011/3-2011-17/2011-03-029-03
  6. Slepnev, A. E., Silaeva, A. A. (2013). About Naturalization of Melanoides tuberculata (Thiaridae, Gastropoda) in Cooling Pond of the South-Ukrainian Nuclear Power Plant. Vestn. zoologii, 47 (2), 178. Available at: http://mail.izan.kiev.ua/vz-pdf/2013/2/22_Prokopenko.pdf
  7. Yakovenko, V. A., Silaeva, A. A., Protasov, A. A. (2018). Invazivnye bryukhonogie mollyuski v tekhnoekosisteme Zaporozhskoy AES. Yaderna enerhetyka ta dovkillia, 1 (11), 61–65. Available at: https://www.researchgate.net/publication/329659147_Yakovenko_V_Sylayeva_A_Protasov_A_Invasive_gastropods_in_the_technoecosystem_of_Zaporozskaya_AES
  8. Protasov, A. A., Sylaieva, A. A., Novoselovа, T. N., Gromova, Y. F., Morozovskaya, I. A. (2017). Nuclear Power Plant Teсhnoeсosуstem: 18 Years of Hydrobiological Observations. Journal of Siberian Federal University. Biology, 11 (4), 459–484. doi: https://doi.org/10.17516/1997-1389-0045
  9. Albloushi, М. А. (2017). Biofouling control of industrial seawater cooling towers. Thuwal, 267. Available at: https://repository.kaust.edu.sa/bitstream/handle/10754/626169/Mohammed%20Albloushi%20Dissertation.pdf?sequence=1&isAllowed=n
  10. Jadidi, P., Zeinoddini, M. (2020). Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder. Renewable Energy, 152, 516–528. doi: https://doi.org/10.1016/j.renene.2020.01.083
  11. Protasov, A. A., Panasenko, G. A., Babariga, S. P. (2008). Biologicheskie pomekhi v ekspluatatsii energeticheskikh stantsiy, ikh tipizatsiya i osnovnye gidrobiologicheskie printsipy ikh ogranicheniya. Gidrobiologicheskiy zhurnal, 44 (5), 36–54.
  12. Fedonenko, O., Marenkov, O., Petrovsky, O. (2019). The Problem of Biological Obstacles in the Operation of Nuclear Power Plants (Illustrated by the Operation of Zaporizhzhya NPP Techno-Ecosystem). Nuclear and Radiation Safety, 2 (82)), 54–60. doi: https://doi.org/10.32918/nrs.2019.2(82).10
  13. Shadrina, L. A. (1988). K voprosu o vliyanii aktivnogo khlora na formirovanie soobschestva morskogo obrastaniya. Ekologiya morya, 28, 93–97.
  14. Goodman, P. D. (1987). Effect of chlorination on materials for sea water cooling systems: a review of chemical reactions. British Corrosion Journal, 22 (1), 56–62. doi: https://doi.org/10.1179/000705987798271785
  15. Giacobone, A. F. F., Pizarro, R. A., Rodríguez, S. A., Belloni, M., Croatto, F. J., Ferrari, F. et. al. (2015). Biocorrosion at Embalse Nuclear Power Plant. Analysis of the Effect of a Biocide Product. Procedia Materials Science, 8, 101–107. doi: https://doi.org/10.1016/j.mspro.2015.04.053
  16. Karpov, V. A., Koval'chuk, Yu. L., Il'in, I. N. (2008). Ekologicheskie aspekty razrabotki i primeneniya sredstv zaschity ot obrastaniya i korrozii v morskoy vode. Zaschita okruzhayuschey sredy v neftegazovom komplekse, 2, 33–35.
  17. Bott, T. R. (2011). Biofouling Control. Industrial Biofouling, 81–153. doi: https://doi.org/10.1016/b978-0-444-53224-4.10004-x
  18. Boleev, A. A. (2013). Predotvraschenie biologicheskogo obrastaniya metallicheskikh konstruktsiy ogolovka vodozabornykh sooruzheniy. Volgograd, 20.
  19. Qiu, H., Feng, K., Gapeeva, A., Meurisch, K., Kaps, S., Li, X. et. al. (2022). Functional polymer materials for modern marine biofouling control. Progress in Polymer Science, 127, 101516. doi: https://doi.org/10.1016/j.progpolymsci.2022.101516
  20. Zhao, X., Kim, J., Warns, K., Wang, X., Ramuhalli, P., Cetiner, S. et. al. (2021). Prognostics and Health Management in Nuclear Power Plants: An Updated Method-Centric Review With Special Focus on Data-Driven Methods. Frontiers in Energy Research, 9. doi: https://doi.org/10.3389/fenrg.2021.696785
  21. Protasov, A. A., Zubkova, Y. I., Silayeva, A. A. (2016). Conceptual Approaches to Organization of Hydrobiological Monitoring of Techno-ecosystems of Thermal and Nuclear Power Plants. Hydrobiological Journal, 52 (2), 59–70. doi: https://doi.org/10.1615/hydrobj.v52.i2.70
  22. Protasov, A. A., Nemtsov, A. A., Mas'ko, A. N. (2019). Application of European Principles of Environmental Protection Activities in the Standard of Hydrobiological Monitoring of Water Techno-Ecosystem NPP SE “NNEGC ‘Energoatom’”. Yaderna enerhetyka ta dovkillia, 2 (14), 71–77. Available at: https://www.researchgate.net/publication/336037180_Primenenie_evropejskih_principov_prirodoohrannoj_deatelnosti_v_standarte_gidrobiologiceskogo_monitoringa_vodnyh_tehnoekosistem_AES_GP_NAEK_EnergoatomApplication_of_European_Principles_of_Environmental
  23. ‘Energoatom’”
  24. Romanenko, V. D. (Ed.) (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod. Kyiv: LOHOS, 408.
  25. Romanenko, V. D., Zhukynskyi, V. M., Oksiiuk, O. P. et. al. (1998). Metody ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy. Kyiv: SYMVOL-T, 28.
  26. Metodicheskie rekomendatsii po sboru i obrabotke materialov pri gidrobiologicheskikh issledovaniyakh. Zooplankton i ego produktsiya (19684). Leningrad: ZIN, 35.
  27. Shcherbak, V. I. (2002). Metody doslidzhen fitoplanktonu. Metodychni osnovy hidrobiolohichnykh doslidzhen vodnykh ekosystem. Kyiv, 41–48.
  28. Pravdin, I. F. (1966). Rukovodstvo po izucheniyu ryb (preimuschestvenno presnovodnykh). Moscow: Pisch. prom-st', 376.
  29. Chugunova, I. I. (1959). Rukovodstvo po izucheniyu vozrasta i rosta ryb. Moscow: Izd-vo AN SSSR, 164.
  30. Bykhovskaya-Pavlovskaya, I. E. (1969). Parazitologicheskie issledovaniya ryb. Leningrad: Nauka, 108.
  31. Instruktsiya po ekspluatatsii pruda-okhladitelya 00.GTS.UL.IE.01.A (2012). Energodar: OP ZAES, 15.
  32. Voda rybohospodarskykh pidpryiemstv. Zahalni vymohy ta normy: SOU-05.01.-37-385:2006 (2006). Kyiv: Ministerstvo ahrarnoi polityky Ukrainy, 7.
  33. SOU NAEK 178:2019. Poriadok rozrobky rehlamentu hidrobiolohichnoho monitorynhu vodoimy-okholodzhuvacha, system okholodzhennia i systemy tekhnichnoho vodopostachannia AES z reaktoramy typu VVER.
  34. Protasova, A. A. (Ed.) (2011). Tekhno-ekosistema AES. Gidrobiologiya, abioticheskie faktory, ekologicheskie otsenki. Kyiv: Institut gidrobiologii NAN Ukrainy, 234.
  35. Vodianitskyi, O. M. (2018). Morfofiziolohichni ta tsytohenetychni osoblyvosti embriohenezu ryb pry riznykh ekolohichnykh umovakh vodnoho seredovyshcha. Kyiv, 22. Available at: http://hydrobio.kiev.ua/images/text/doc/aref_Vodyanitskiy.pdf
  36. Suzdaleva, A. L. (1995). Bakterioplankton vodoemov-okhladiteley Kurskoy i Kalininskoy AES. Moscow, 24.
  37. Okhrimenko, O. (2013). Assesment of zaporizka nuclear power station pond cooler water quality by biological indication method. Rybohospodarska nauka Ukrainy, 1 (23), 103–108. doi: https://doi.org/10.15407/fsu2013.01.103
  38. Makushenko, M. E., Kulakov, D. V., Vereschagina, E. A. (2014). Zooplankton Koporskoy guby Finskogo zaliva v zone vozdeystviya Leningradskoy AES. Gidrobiol. zhurn., 50 (2), 3–15. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/105283/01-MakushenkoNEW.pdf?sequence=1
  39. Muthulakshmi, A. L., Natesan, U., Ferrer, V. A., Deepthi, K., Venugopalan, V. P., Narasimhan, S. V. (2019). Impact assessment of nuclear power plant discharge on zooplankton abundance and distribution in coastal waters of Kalpakkam, India. Ecological Processes, 8 (1). doi: https://doi.org/10.1186/s13717-019-0173-9
  40. Klymchuk, A. (2015). Biolohichni osoblyvosti invaziynoho vydu hastropod. Melanoides tuberculata: Abstr. VІІІ Intern. Conf. «Zoocenosis-2015. Biodiversity and Role of Animals in Ecosystems». Dnipro, 78–79.
  41. Marenkov, O., Batalov, K., Kriachek, O. (2018). Biological and biomechanical principles of the controlling molluscs Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) in reservoirs of strategic importance. World Scientific News, 99, 71–83. Available at: http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-c88f8d40-b81a-4b84-b757-0998d39099d1
  42. Silva, E. C., Gomes, L. E. O. (2014). Melanoides tuberculatus (Müller, 1774): Occurrence extension of the invasive gastropod in Bahia, Brazil. Pan-American. Journal of Aquatic Sciences, 9 (2), 145–149. Available at: http://panamjas.org/pdf_artigos/PANAMJAS_9(2)_145-149.pdf
  43. Yakovenko, V., Fedonenko, O., Klimenko, O., Petrovsky, O. (2018). Biological control of the invasive snail species Melanoides tuberculata and Tarebia granifera in Zaporizka Nuclear Power Plant cooling pond. Ukrainian Journal of Ecology, 8 (1), 975–982. doi: https://doi.org/10.15421/2018_301
  44. Yesipova, N. B. (2018). Tsytometrychni osoblyvosti moliuskiv rodyny Thiaridae, shcho utvoriuiut obrostannia v hidrotekhnichnii systemi Zaporizkoi AES. Tavriyskyi naukovyi visnyk, 103, 256–261. Available at: http://dspace.ksau.kherson.ua/bitstream/handle/123456789/2347/40.pdf?sequence=1&isAllowed=y
  45. Frida, B.-A., Heller, J. (2001). Biological control of aquatic pest snails by the Black carp Mylopharyngodon piceus. Biological Control, 22, 131–138. doi: https://doi.org/10.1006/bcon.2001.0967
  46. Zakonnova, L., Nikishkin, I., Rostovzev, A. (2017). Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds. E3S Web of Conferences, 21, 02015. doi: https://doi.org/10.1051/e3sconf/20172102015

Downloads

Published

2022-04-30

How to Cite

Yesipova, N. ., Marenkov, O., Sharamok, T., Nesterenko, O., & Kurchenko, V. . (2022). Development of the regulation of hydrobiological monitoring in circulation cooling system of the Zaporizhzhia nuclear power plant . Eastern-European Journal of Enterprise Technologies, 2(10 (116), 6–17. https://doi.org/10.15587/1729-4061.2022.255537