Magnetization of bioethanol-gasoline fuel blends for development combustion energy and reducing exhaust gas emissions
DOI:
https://doi.org/10.15587/1729-4061.2022.257600Keywords:
magnetization fuel blends, mixtures of bioethanol-gasoline, reduction exhaust emission, combustion energyAbstract
The effect of the magnetization field on molecular interactions of the bioethanol-gasoline fuel blends was investigated. This technique was promoted to escalate both the increase in combustion energy and reduce emissions in the internal combustion engine. The bioethanol and gasoline fuel are used for the single-cylinder four-stroke engine with different mixtures, namely E0, E10, E20, and E30, serially. Distinguish of electromagnetic field strength with various intensity was given into the fuel by lower than 1,500 Gauss. The absorption intensity and the functional groups of the fuel molecules are characterized in detail by Fourier Transform Infra-Red (FTIR) spectroscopy. The exhaust gas emission and the fuel blends energy are performed using a gas analyzer and calorimeter bomb. By increasing the magnetic field, the de-clustering of the fuel molecules is demonstrated by growing the absorption intensity to be advanced. There is no change in the chemical composition of the fuel as the magnetic induction was enforced. Reduction of namely Carbon monoxide (CO), Nitrogen monoxide (NO), Nitrogen oxides (NOx), and Sulphur Dioxide (SO2) gas emissions was attained to be 29 %, 25 %, 26 %, and 31 % using a magnetic field of 1,419.57 Gauss, respectively, compared to gasoline fuel without magnetic condition. The greater reduction occurs by employing E30 fuel with the same magnetic intensity, achieved up to 38 %, 42 %, 70 %, and 63 %, regularly. The magnetization treatment leads to improved combustion quality with efficiency increases up to 11.32 %. It contributes to perfect combustion in a single-cylinder four-stroke engine system. Reducing gas emissions can also bring a good environmental impact in the life, although the heat energy gradually deteriorated as the fuel utilized more bioethanol blends
References
- Jhang, S.-R., Lin, Y.-C., Chen, K.-S., Lin, S.-L., Batterman, S. (2020). Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen. Energy, 209, 118436. doi: https://doi.org/10.1016/j.energy.2020.118436
- Rahman, S. M., Khondaker, A. N., Hasan, M. A., Reza, I. (2017). Greenhouse gas emissions from road transportation in Saudi Arabia - a challenging frontier. Renewable and Sustainable Energy Reviews, 69, 812–821. doi: https://doi.org/10.1016/j.rser.2016.11.047
- Li, L., Ge, Y., Wang, M., Peng, Z., Song, Y., Zhang, L., Yuan, W. (2015). Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. Science of The Total Environment, 502, 627–631. doi: https://doi.org/10.1016/j.scitotenv.2014.09.068
- Yao, Y.-C., Tsai, J.-H., Wang, I.-T. (2013). Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend. Applied Energy, 102, 93–100. doi: https://doi.org/10.1016/j.apenergy.2012.07.041
- Lim, C.-S., Lim, J.-H., Cha, J.-S., Lim, J.-Y. (2019). Comparative effects of oxygenates-gasoline blended fuels on the exhaust emissions in gasoline-powered vehicles. Journal of Environmental Management, 239, 103–113. doi: https://doi.org/10.1016/j.jenvman.2019.03.039
- Dhande, D. Y., Sinaga, N., Dahe, K. B. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7 (3), e06380. doi: https://doi.org/10.1016/j.heliyon.2021.e06380
- Anderson, J. E., DiCicco, D. M., Ginder, J. M., Kramer, U., Leone, T. G., Raney-Pablo, H. E., Wallington, T. J. (2012). High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States. Fuel, 97, 585–594. doi: https://doi.org/10.1016/j.fuel.2012.03.017
- Mohammed, M. K., Balla, H. H., Al-Dulaimi, Z. M. H., Kareem, Z. S., Al-Zuhairy, M. S. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25, 100891. doi: https://doi.org/10.1016/j.csite.2021.100891
- Yang, H.-H., Liu, T.-C., Chang, C.-F., Lee, E. (2012). Effects of ethanol-blended gasoline on emissions of regulated air pollutants and carbonyls from motorcycles. Applied Energy, 89 (1), 281–286. doi: https://doi.org/10.1016/j.apenergy.2011.07.035
- Sakthivel, P., Subramanian, K. A., Mathai, R. (2018). Indian scenario of ethanol fuel and its utilization in automotive transportation sector. Resources, Conservation and Recycling, 132, 102–120. doi: https://doi.org/10.1016/j.resconrec.2018.01.012
- Costagliola, M. A., Prati, M. V., Murena, F. (2016). Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions. Atmospheric Environment, 132, 133–140. doi: https://doi.org/10.1016/j.atmosenv.2016.02.045
- Ghadikolaei, M. A. (2016). Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines – A review. Renewable and Sustainable Energy Reviews, 57, 1440–1495. doi: https://doi.org/10.1016/j.rser.2015.12.128
- Lee, Z., Park, S. (2020). Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure. Renewable Energy, 149, 80–90. doi: https://doi.org/10.1016/j.renene.2019.12.050
- Abdul-Wahhab, H. A., Al-Kayiem, H. H., A. Aziz, A. R., Nasif, M. S. (2017). Survey of invest fuel magnetization in developing internal combustion engine characteristics. Renewable and Sustainable Energy Reviews, 79, 1392–1399. doi: https://doi.org/10.1016/j.rser.2017.05.121
- Jain, S. (2012). Experimental Investigation of Magnetic Fuel Conditioner (M.F.C) in I.C. engine. IOSR Journal of Engineering, 02 (07), 27–31. doi: https://doi.org/10.9790/3021-02712731
- Niaki, S. R. A., Zadeh, F. G., Niaki, S. B. A., Mouallem, J., Mahdavi, S. (2019). Experimental investigation of effects of magnetic field on performance, combustion, and emission characteristics of a spark ignition engine. Environmental Progress & Sustainable Energy, 39 (2). doi: https://doi.org/10.1002/ep.13317
- Abdel-Rehim, A. A., Attia, A. A. A. (2014). Does magnetic fuel treatment affect engine’s performance? SAE Technical Paper Series. doi: https://doi.org/10.4271/2014-01-1398
- Faris, A. S., Al-Naseri, S. K., Jamal, N., Isse, R., Abed, M., Fouad, Z. et. al. (2012). Effects of Magnetic Field on Fuel Consumption and Exhaust Emissions in Two-Stroke Engine. Energy Procedia, 18, 327–338. doi: https://doi.org/10.1016/j.egypro.2012.05.044
- Jalali, M., Ahmadi, M. S., Yadaei, F., Azimi, M. H. Z., Hoseini, H. M. (2013). Enhancement of Benzine Combustion Behavior in Exposure to the Magnetic Field. Journal of Clean Energy Technologies,1 (3), 224–227. doi: https://doi.org/10.7763/jocet.2013.v1.51
- Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. Analytical Techniques in the Sciences. doi: https://doi.org/10.1002/0470011149
- Wibowo, N. A., Utami, S. M., Riyanto, C. A., Setiawan, A. (2020). Impact of Magnetic Field Strengthening on Combustion Performance of Low-Octane Fuel in Two-Stroke Engine. Jurnal Pendidikan Fisika Indonesia, 16 (1), 57–62. doi: https://doi.org/10.15294/jpfi.v16i1.17491
- Shen, J., Zhu, S., Liu, X., Zhang, H., Tan, J. (2012). Measurement of Heating Value of Rice Husk by Using Oxygen Bomb Calorimeter with Benzoic Acid as Combustion Adjuvant. Energy Procedia, 17, 208–213. doi: https://doi.org/10.1016/j.egypro.2012.02.085
- Oommen, L. P., Kumar, G. N. (2019). A Study on the Effect of Magnetic Field on the Properties and Combustion of Hydrocarbon Fuels. International Journal of Mechanical and Production Engineering Research and Development, 9 (3), 89–98. doi: https://doi.org/10.24247/ijmperdjun20199
- Nufus, T. H., Setiawan, R. P. A., Hermawan, W., Tambunan, A. H. (2017). Characterization of biodiesel fuel and its blend after electromagnetic exposure. Cogent Engineering, 4 (1), 1362839. doi: https://doi.org/10.1080/23311916.2017.1362839
- Chang, R., Goldsby, K. A. (2013). Chemistry. McGraw-Hill Education.
- Kumar, P. V., Patro, S. K., Pudi, V. (2014). Experimental study of a novel magnetic fuel ionization method in four stroke diesel engines. Int. J. Mech Eng. Rob. Res., 3 (1), 151–159. Available at: http://www.ijmerr.com/v3n1/ijmerr_v3n1_17.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tatun Hayatun Nufus, Andi Ulfiana, Noor Hidayati, Isnanda Nuriskasari, Emir Ridwan, Sri Lestari Kusumastuti, Sulaksana Permana, Iwan Susanto
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.