Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.258118

Keywords:

steel tank, stress concentration, mounting joint, joint parameters, numerical method

Abstract

Based on the use of a multi-level mathematical model, this paper estimates the stressed-strained state of a cylindrical reservoir in the mounting joint and considers the concentration of stresses in the joint zone.

The correctness of the selected mathematical model was verified to show that for an engineering assessment of the stressed-strained state of the wall of a cylindrical tank with variable thickness, it is possible to use the ratios for a cylindrical shell with a constant wall thickness. The spread of values is no more than 1 %, which indicates the proper selection of the mathematical model.

A numerical assessment of the stressed-strained state in the zone of the mounting joint proved the assumption of significant stress concentrations in the zone and indicated the determining effect exerted on the concentration of stresses by its geometric dimensions.

The concentration of stresses in the joint zone of the tank wall was investigated at various sizes in the ANSYS programming environment. The result of calculating the stressed-strained state of the reservoir for various values of the dent parameters f/t and  is the constructed polynomials that approximate the stress concentration coefficient Kσ.

As a result of the calculations, an interpolation polynomial and an approximating stress concentration coefficient were derived, which could be used to assess the strength, durability, residual life of the tank and to normalize the limiting dimensions of the imperfection of the joint.

This paper reports comparative results of the calculations of the stress concentration coefficient depending on the geometric dimensions of the imperfection of the mounting joint in the ANSYS software package, as well as using an interpolation polynomial.

The results could be used to assess the strength and residual life of such structures.

Author Biographies

Ulanbator Suleimenov, Mukhtar Auezov South Kazakhstan University

Doctor of Technical Sciences, Professor

Department of Architecture

Nurlan Zhangabay, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Construction and Construction Materials

Khassen Abshenov, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Akmaral Utelbayeva, Mukhtar Auezov South Kazakhstan University

Doctor of Chemical Sciences, Associate Professor

Department of Chemistry

Kuanysh Imanaliyev, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Architecture

Saule Mussayeva, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Chemistry

Arman Moldagaliyev, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Myrzabek Yermakhanov, Central Asian Innovation University

PhD, Associate Professor

Department of Chemistry, Biology and Ecology

Gulnura Raikhanova, Mukhtar Auezov South Kazakhstan University

Department of Construction and Construction Materials

References

  1. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. N. M., Moldagaliyev, A., Abshenov, K. et. al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
  2. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. et. al. (2022). Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.254218
  3. Oil tankers: Danger on the rails. Available at: https://edition.cnn.com/2015/05/14/us/oil-tank-investigation/
  4. Oil Tank Leaks or Oil Tank & Tank Piping Failure & Oil Leak Odor Causes. Available at: https://inspectapedia.com/oiltanks/Oil_Tank_Leak_Causes.php
  5. Analiz rynka nefteproduktov v Kazakhstane - 2022. Pokazateli i prognozy. Available at: https://tebiz.ru/mi/analiz-rynka-nefteproduktov-v-kazakhstane
  6. Hud, M. (2022). Simulation of the stress-strain state of a cylindrical tank under the action of forced oscillations. Procedia Structural Integrity, 36, 79–86. doi: https://doi.org/10.1016/j.prostr.2022.01.006
  7. Farhan, M. M., Al-Jumialy, M. M., Al-Muhammadi, A. D., Ismail, A. S. (2017). Development of a New Method for Reducing the Loss of Light Hydrocarbons at Breather Valve of Oil Tanks. Energy Procedia, 141, 471–478. doi: https://doi.org/10.1016/j.egypro.2017.11.061
  8. Hong, F., Jiang, L., Zhuo, Q., Zhang, F., Lu, X., Ma, X., Hao, J. (2018). Types of abnormal high-pressure gas reservoir in foreland basins of China. Journal of Natural Gas Geoscience, 3 (4), 191–201. doi: https://doi.org/10.1016/j.jnggs.2018.10.001
  9. Duissenbekov, B., Tokmuratov, A., Zhangabay, N., Orazbayev, Z., Yerimbetov, B., Aldiyarov, Z. (2020). Finite-difference equations of quasistatic motion of the shallow concrete shells in nonlinear setting. Curved and Layered Structures, 7 (1), 48–55. doi: https://doi.org/10.1515/cls-2020-0005
  10. Borodin, K., Zhangabayuly Zhangabay, N. (2019). Mechanical characteristics, as well as physical-and-chemical properties of the slag-filled concretes, and investigation of the predictive power of the metaheuristic approach. Curved and Layered Structures, 6 (1), 236–244. doi: https://doi.org/10.1515/cls-2019-0020
  11. Utelbaeva, A. B., Ermakhanov, M. N., Zhanabai, N. Z., Utelbaev, B. T., Mel’deshov, A. A. (2013). Hydrogenation of benzene in the presence of ruthenium on a modified montmorillonite support. Russian Journal of Physical Chemistry A, 87 (9), 1478–1481. doi: https://doi.org/10.1134/s0036024413090276
  12. Filippov, V. V., Prokhorov, V. A., Argunov, S. V., Buslaeva, I. I. (1993). Tekhnicheskoe sostoyanie rezervuarov dlya khraneniya nefteproduktov obedineniya «Yakutnefteprodukt». Izvestiya vuzov. Stroitel'stvo, 7-8, 13–16.
  13. Biletskiy, S. M., Golin'ko, V. M. (1983). Industrial'noe izgotovlenie negabaritnykh svarnykh listovykh konstruktsiy. Kyiv: Nauk. dumka, 272. Available at: https://search.rsl.ru/ru/record/01001165555
  14. Ivantsova, S. G., Rakhmanin, A. I., Tarasenko, M. A., Sil'nitskiy, P. F. (2011). Kontseptsiya analiza riska rezervuarnykh konstruktsiy. Upravlenie kachestvom v neftegazovom komplekse, 3, 31–35.
  15. Mansurovа, S. M., Tlyashevа, R. R., Ivakin, A. V., Shayzakov, G. A., Bayramgulov, A. S. (2014). Cylindrical steel tank stress-strain state evaluation with operational loads taken into account. Oil and Gas Business, 1, 329–344. doi: https://doi.org/10.17122/ogbus-2014-1-329-344
  16. Fan, Y., Hunt, J., Wang, Q., Yin, S., Li, Y. (2019). Water tank modelling of variations in inversion breakup over a circular city. Building and Environment, 164, 106342. doi: https://doi.org/10.1016/j.buildenv.2019.106342
  17. Martynenko, G., Avramov, K., Martynenko, V., Chernobryvko, M., Tonkonozhenko, A., Kozharin, V. (2021). Numerical simulation of warhead transportation. Defence Technology, 17 (2), 478–494. doi: https://doi.org/10.1016/j.dt.2020.03.005
  18. Wang, Z., Hu, K., Zhao, Y. (2022). Doom-roof steel tanks under external explosion: Dynamic responses and anti-explosion measures. Journal of Constructional Steel Research, 190, 107118. doi: https://doi.org/10.1016/j.jcsr.2021.107118
  19. Rastgar, M., Showkati, H. (2018). Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection. Journal of Constructional Steel Research, 145, 289–299. doi: https://doi.org/10.1016/j.jcsr.2018.02.028
  20. Aydın Korucuk, F. M., Maali, M., Kılıç, M., Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-Walled Structures, 143, 106259. doi: https://doi.org/10.1016/j.tws.2019.106259
  21. Coramik, M., Ege, Y. (2017). Discontinuity inspection in pipelines: A comparison review. Measurement, 111, 359–373. doi: https://doi.org/10.1016/j.measurement.2017.07.058
  22. Bannikov, R. Yu., Smetannikov, О. Yu., Trufanov, N. A. (2014). Calculation of the amplitude of local conditional elastic stresses on the wall section tank with defects the form as a dent. Vestn. Samar. Gos. Tekhn. Un-ta. Ser. Tekhnicheskie nauki, 2 (42), 79–86. Available at: http://vestnik-teh.samgtu.ru/sites/vestnik-teh.samgtu.ru/files/auto/42_4_mashinostroenie_2014.pdf
  23. Dmitrieva, A. S., Lyagova, A. A. (2016). Problemy otsenki tekhnicheskogo sostoyaniya stal'nykh rezervuarov s defektom «Vmyatina». Nauka i molodezh' v XXI veke, materialy 2-y Vserossiyskoy nauchno-prakticheskoy konferentsii. Omskiy gosudarstvennyy tekhnicheskiy universitete, 138–142.
  24. Maslak, M., Pazdanowski, M., Siudut, J., Tarsa, K. (2017). Corrosion Durability Estimation for Steel Shell of a Tank Used to Store Liquid Fuels. Procedia Engineering, 172, 723–730. doi: https://doi.org/10.1016/j.proeng.2017.02.092
  25. Kolesov, A. I., Ageeva, M. A. (2011). Ostatochniy resurs stal'nykh rezervuarov khimii i neftekhimii, otrabotavshikh normativnye sroki ekspluatatsii. Vestnik MGSU, 1, 388–391.
  26. TP-704-1-167-84. Rezervuar stal'noy vertikal'nyy tsilindricheskiy dlya nefti i nefteproduktov emkost'yu 2000m3. Al'bom I. Konstruktsii metallicheskie rezervuara. Available at: https://meganorm.ru/Data2/1/4293833/4293833208.pdf
  27. Likhman, V. V., Kopysitskaya, L. N., Muratov, V. M. (1992). Kontsentratsiya napryazheniy v rezervuarakh s lokal'nymi nesovershenstvami formy. Khimicheskoe i neftyanoe mashinostroenie, 6, 22–24.
  28. Kopysitskaya, L. N., Likhman, V. V., Muratov, V. M. (1989). Inzhenerniy metod rascheta napryazhenno-deformirovannogo sostoyaniya svarnykh tsilindricheskikh rezervuarov s uvodom kromok. Khimicheskoe i neftyanoe mashinostroenie, 10, 15–18.
  29. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A., Dosmakanbetova, A., Abshenov, K. et. al. (2022). Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall. Eastern-European Journal of Enterprise Technologies, 1 (7 (115)), 6–20. doi: https://doi.org/10.15587/1729-4061.2022.252599

Downloads

Published

2022-06-30

How to Cite

Suleimenov, U., Zhangabay, N., Abshenov, K., Utelbayeva, A., Imanaliyev, K., Mussayeva, S., Moldagaliyev, A., Yermakhanov, M., & Raikhanova, G. (2022). Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections . Eastern-European Journal of Enterprise Technologies, 3(7(117), 14–21. https://doi.org/10.15587/1729-4061.2022.258118

Issue

Section

Applied mechanics