Improving the crack resistance of inclined cross-sections of reinforced concrete containment shells in areas of emergency loads of pushing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.262337

Keywords:

protective structure, airplane crash, push angle, horizontal reinforcement, crack resistance of sections, nagel effect

Abstract

The object of this research was the crack resistance of inclined sections of concrete and reinforced concrete fragments of protective structures under the action of emergency dynamic loads. The characteristics of dangerous emergency dynamic loads on protective structures (seismic, aircraft attack), the experience of increasing the crack resistance of inclined sections with various materials and design measures under static effects have been described. Areas of influence of dynamic loads on reinforced concrete structures reinforced with horizontal grids near the upper and lower faces need to increase crack resistance and eliminate the risk of splitting in the mesh plane. Comparison of the results of experimental studies of inclined sections of protective structures in the area of influence of local emergency load showed the feasibility of such structural measures. Additional horizontal reinforcement near the pushing face increases crack resistance by 55–65 %. When using the developed theoretical dependences, the error in determining the cracking forces and pushing strength does not exceed 20.7 %.

Increased crack resistance is ensured by limiting the maximum diameters of the rods of horizontal grids and their pitch. Especially important is the arrangement of additional reinforcement in the middle zone, taking into account the actual tensile strength of concrete in the calculated dependences. Complete elimination of the danger of splitting in areas of probable action of emergency dynamic load in protective structures in the planes of the grids is recommended through the use of concrete of class not lower than C16/20, the use of reinforcement Ø12–14 mm. The optimal pitch of the rods is 50–125 mm. This makes it possible to increase the reliability of the design and operation of protective structures in case of emergency impacts, to reduce the cost of their repair after such impacts.

Author Biography

Ihor Karkhut, Lviv Polytechnic National University

PhD, Associate Professor

Department of Building Constructions and Bridges

References

  1. Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., Augliera, P. (2013). Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bulletin of Earthquake Engineering, 12 (1), 391–430. doi: https://doi.org/10.1007/s10518-013-9525-5
  2. Boore, D. M., Stewart, J. P., Seyhan, E., Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30 (3), 1057–1085. doi: https://doi.org/10.1193/070113eqs184m
  3. Bozorgnia, Y., Campbell, K. W. (2016). Vertical Ground Motion Model for PGA, PGV, and Linear Response Spectra Using the NGA-West2 Database. Earthquake Spectra, 32 (2), 979–1004. doi: https://doi.org/10.1193/072814eqs121m
  4. Çağnan, Z., Akkar, S., Kale, Ö., Sandıkkaya, A. (2016). A model for predicting vertical component peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped pseudospectral acceleration (PSA) for Europe and the Middle East. Bulletin of Earthquake Engineering, 15 (7), 2617–2643. doi: https://doi.org/10.1007/s10518-016-0063-9
  5. Du, W., Wang, G. (2012). A simple ground-motion prediction model for cumulative absolute velocity and model validation. Earthquake Engineering & Structural Dynamics, 42 (8), 1189–1202. doi: https://doi.org/10.1002/eqe.2266
  6. Foulser‐Piggott, R., Goda, K. (2015). Ground‐Motion Prediction Models for Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes Considering Single‐Station Sigma and Within‐Event Spatial Correlation. Bulletin of the Seismological Society of America, 105 (4), 1903–1918. doi: https://doi.org/10.1785/0120140316
  7. Sedaghati, F., Pezeshk, S. (2017). Partially Nonergodic Empirical Ground‐Motion Models for Predicting Horizontal and Vertical PGV, PGA, and 5% Damped Linear Acceleration Response Spectra Using Data from the Iranian Plateau. Bulletin of the Seismological Society of America, 107 (2), 934–948. doi: https://doi.org/10.1785/0120160205
  8. Maksymovych, S., Krochak, O., Karkhut, I., Vashkevych, R. (2020). Experimental Study of Crack Resistance and Shear Strength of Single-Span Reinforced Concrete Beams Under a Concentrated Load at a/d = 1. Proceedings of EcoComfort 2020, 277–285. doi: https://doi.org/10.1007/978-3-030-57340-9_34
  9. Blikharskyi, Z. Ya., Karkhut, I. I. (2017). Rozrakhunok i konstruiuvannia zghynanykh zalizobetonnykh elementiv. Lviv: Vydavn. Lvivskoi politekhniky, 186.
  10. Korenev, B. G., Smirnova, A. F. (Eds.) (1986). Dinamicheskiy raschet spetsial'nykh inzhenernykh sooruzheniy i konstruktsiy. Spravochnik proektirovschika. Moscow: Stroyizdat, 461.
  11. Duan, Z., Zhang, L., Wen, L., Guo, C., Bai, Z., Ou, Z., Huang, F. (2018). Experimental research on impact loading characteristics by full-scale airplane impacting on concrete target. Nuclear Engineering and Design, 328, 292–300. doi: https://doi.org/10.1016/j.nucengdes.2018.01.021
  12. Králik, J. (2014). Safety of Nuclear Power Plants against the Aircraft Attack. Applied Mechanics and Materials, 617, 76–80. doi: https://doi.org/10.4028/www.scientific.net/amm.617.76
  13. Eibl, J. (2003). Airplane Impact on Nuclear Power plants. Proceedings of the 17th international conference on structural mechanics in reactor technology. Prague. Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:36071655
  14. Kirillov, A. P., Sargsyan, A. E. (1982). Raschet zaschitnoy obolochki na vozdeystvie padayuschego samoleta. Materialy konferentsiy i soveschaniy po gidrotekhnike: Predel'nye sostoyaniya betonnykh i zhelezobetonnykh konstruktsiy energeticheskikh sooruzheniy. Leningrad: Energoizdat, 151–159.
  15. Makarenko, L. P. (1986). Rekomendatsii po raschetu zhelezobetonnykh zaschitnykh obolochek AES v avariynoy situatsii. Rovno, 22.
  16. Blikharskyy, Z., Khmil, R., Vegera, P. (2017). Shear strength of reinforced concrete beams strengthened by P.B.O. fiber mesh under loading. MATEC Web of Conferences, 116, 02006. doi: https://doi.org/10.1051/matecconf/201711602006
  17. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T. (2018). Fracture toughness of RC beams on the shear, strengthening by FRCM system. MATEC Web of Conferences, 183, 02009. doi: https://doi.org/10.1051/matecconf/201818302009
  18. Karkhut, I. I. (2021). Design and Construction in Areas with High Seismic Activity. Lviv, 188. Available at: https://vlp.com.ua/node/20395
  19. Bychenkov, Yu. D., Bespaev, A. A. (1971). Prochnost' i treschinostoykost' uzlov ram zhelezobetonnogo karkasa seysmostoykikh mnogoetazhnykh zdaniy. Beton i zhelezobeton, 2.
  20. Babaev, V. N., Bambura, A. N., Pustovoitova, O. M., Reznyk, P. A., Stoianov, Ye. H., Shmukler, V. S. (2015) Praktychnyi rozrakhunok elementiv zalizobetonnykh konstruktsiy za DBN V.2.6-98:20009 u porivnianni z rozrakhunkamy za SNyP 2.03.01-84* i EN 1992-1-1 (Eurocode 2). Kharkiv: Zolotye stranitsy. Available at: http://eprints.kname.edu.ua/42750/

Downloads

Published

2022-08-30

How to Cite

Karkhut, I. (2022). Improving the crack resistance of inclined cross-sections of reinforced concrete containment shells in areas of emergency loads of pushing. Eastern-European Journal of Enterprise Technologies, 4(7 (118), 31–41. https://doi.org/10.15587/1729-4061.2022.262337

Issue

Section

Applied mechanics