Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method

Authors

  • Маргарита Іванівна Воробйова Ukrainian State Chemical Technology University, Ukraine https://orcid.org/0000-0001-9686-736X
  • Олександр Андрійович Півоваров Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005, Ukraine https://orcid.org/0000-0001-7849-0722
  • Вікторія Іванівна Воробйова National Technical University of Ukraine "Kyiv Polytechnic Institute" Ukraine, 03056, Kyiv-56, prospect, 37, Ukraine https://orcid.org/0000-0001-7479-9140
  • Лілія Анатоліївна Фролова Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26262

Keywords:

obtaining, sol, gold, solutions, tetrohloroaurat, nanoparticles, contact nonequilibrium low-temperature plasma, mechanism, action, hydrogen hydrogen

Abstract

Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents, since the development of new high technologies to obtain nanoscale inorganic compounds is currently relevant. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet–visible spectroscopy. The UV–vis spectroscopy revealed the formation of gold nanoparticles by exhibiting surface plasmon absorption maxima at 548 nm. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Transmission electron micrograph (TEM) showed presence of spherical particles in the range of 7–60 nm size. Particles of different shapes (e.g. spherical, triangular,) are synthesized in aqueous solutions. Conclude that H2O2 plays the role of the reducing agent which converts AuCl ions to Au0 atoms, leading to nucleation growth of the AuNPs.

Author Biographies

Маргарита Іванівна Воробйова, Ukrainian State Chemical Technology University

Graduate Student

Department of inorganic substances and Ecology 

Олександр Андрійович Півоваров, Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005

Doctor of Technical Sciences,

Professor Department of Inorganic Materials Technology and Ecology

Вікторія Іванівна Воробйова, National Technical University of Ukraine "Kyiv Polytechnic Institute" Ukraine, 03056, Kyiv-56, prospect, 37

Graduate Student

Department of Physical Chemistry 

Лілія Анатоліївна Фролова, Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005

Candidate of Technical Sciences, Associate Professor

Department of Inorganic Materials Technology and Ecology 

References

  1. Dyikman, L. A. (2008). Gold nanoparticles: synthesis, properties and biomedical applications. Moscow, Nauka, 320.
  2. Chen, X., Mao, S. S. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107 (7), 2891–2959. doi:10.1021/cr0500535
  3. Mariotti, D., Patel, J., Švrček, V., Maguire, P. (2012). Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Processes and Polymers, 9 (11-12), 1074–1085. doi:10.1002/ppap.201200007
  4. Patel, J., Němcová, L., Maguire, P., Graham, W. G., Mariotti, D. (2013). Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology, 24 (24), 1–11. doi:10.1088/0957-4484/24/24/245604
  5. Vollath, D. (2008). Plasma synthesis of nanopowders. J Nanopart Res, 10 (S1), 39–57. doi:10.1007/s11051-008-9427-7
  6. Richmonds, C., Sankaran, R. M. (2008). Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett., 93 (13), 385–388. doi:10.1063/1.2988283
  7. Mariotti, D., Sankaran, R. M. (2010). Microplasmas for nanomaterials synthesis. J. Phys. D: Appl. Phys., 43 (32), 21. doi:10.1088/0022-3727/43/32/323001
  8. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61 (1), 2–30. doi:10.1016/j.sab.2005.10.003
  9. Kaneko, T., Baba, K., Hatakeyama, R. (2009). Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode. Journal of Applied Physics, 105 (10), 103–306. doi:10.1063/1.3133213
  10. Ostrikov, K. (Ken), Cvelbar, U., Murphy, A. B. (2011). Plasma nanoscience: setting directions, tackling grand challenges. J. Phys. D: Appl. Phys., 44 (17), 1–60. doi:10.1088/0022-3727/44/17/174001
  11. Pivovarov, A. A. (2013). Contact nonequilibrium plasma as a tool for the treatment of water and aqueous solutions. Theory and practice. Rossiyskiy himicheskiy zhurnal, 3, 134–145.
  12. Kravchenko, A. V. (2013). Low-temperature electrolysis: Theory and Practice. Dnepropetrovsk, «Aktsent PP», 229.

Published

2014-08-13

How to Cite

Воробйова, М. І., Півоваров, О. А., Воробйова, В. І., & Фролова, Л. А. (2014). Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method. Eastern-European Journal of Enterprise Technologies, 4(5(70), 39–44. https://doi.org/10.15587/1729-4061.2014.26262