New intercalation modified structures of natural minerals for high-efficient Li+-cationic electricity generation

Authors

  • Іван Іванович Григорчак Lviv Polytechic National University, Ukraine
  • Роман Ярославович Швець Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Тетяна Миколаївна Біщанюк Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Василь Іванович Балук Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Андрій Сергійович Курепа Lviv Polytechic National University Bandery 12, Lviv, 79013, Ukraine
  • Юрій Орестович Кулик Ivan Franko National University of Lviv Universytetska 1, Lviv, 79000, Ukraine
  • Юрій Іванович Семенцов Chuiko Institute of Surface Chemistry of NAS of Ukraine General Naumov 17, Kyiv, 03164, Ukraine
  • Галина Іванівна Довбешко Institute of Physics of NAS of Ukraine Prospect Nauky, 46, Kyiv, 03028, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26266

Keywords:

gibbsite, chalcopyrite, multigraphene, supramolecular structure, intercalation, Gibbs energy, Nyquist diagram, diffusion coefficient

Abstract

The possibility of a direct application of natural minerals of gibbsite (Al(OH)3), chalcopyrite (CuFeS2) and multigraphene for the efficient Li+ - intercalation current formation was experimentally justified. The reason for studying these materials is that they are cheap, environmentally-friendly, affordable and abundant in nature. The dependences of changing the Gibbs free energy and the kinetic parameters of the intercalation reaction on the degree of “guest” lithium loading were analyzed for these materials. It was shown that the distinguishing feature of the Li+ - intercalation current formation in structures under study was that it was significantly affected by the energy topology of surface states, controlled by the nanoscale dimensionality of the power generating particles and their molecular environment, therefore, acting as a powerful “tool” to improve power-generating capacities of the cathodes of the current lithium sources. Based on the data obtained by the impedance spectroscopy, X-ray diffraction analysis and light-scattering spectroscopy, a mechanism of the observed phenomena was proposed.

Author Biographies

Іван Іванович Григорчак, Lviv Polytechic National University

Professor

Department of Applied Physics and Nanomaterials Science

Роман Ярославович Швець, Lviv Polytechic National University Bandery 12, Lviv, 79013

Postgraduate student

Department of Applied Physics and Nanomaterials Science 

Тетяна Миколаївна Біщанюк, Lviv Polytechic National University Bandery 12, Lviv, 79013

Postgraduate student

Department of Applied Physics and Nanomaterials Science

Василь Іванович Балук, Lviv Polytechic National University Bandery 12, Lviv, 79013

Engineer

Department of Applied Physics and Nanomaterials Science

Андрій Сергійович Курепа, Lviv Polytechic National University Bandery 12, Lviv, 79013

PhD, Assistant

Department of Applied Physics and Nanomaterials Science

Юрій Орестович Кулик, Ivan Franko National University of Lviv Universytetska 1, Lviv, 79000

PhD, Assistant

Department of Metal Physics

Юрій Іванович Семенцов, Chuiko Institute of Surface Chemistry of NAS of Ukraine General Naumov 17, Kyiv, 03164

PhD

Галина Іванівна Довбешко, Institute of Physics of NAS of Ukraine Prospect Nauky, 46, Kyiv, 03028

Professor

Department of physics of biological systems

References

  1. Onishchenko, D. V., Tsvetnikov, A. K., Popovich, A. A., Kuryaviy, V. G. (2007). Synthesis of new cathode materials for lithium chemical sources of a currents. Electronic scientific journal "Investigated in Russia", 118, 1232–1242.
  2. Pidluzhna, A. Y., Grigorchak, I. I., Nikipanchuk, M. V., Ostafiychuk, B. K., Budzulyak, I. M., Mitsov, M. M., Yablon’, L. S. (2012, May). Intercalation current generation in oxygen- and sulfur-doped talc. Russ J Electrochem. Pleiades Publishing Ltd., 48 (5), 598–602. doi:10.1134/s1023193512040118
  3. Grygorchak, I. I. (2002). Talc as a new host material in intercalation nanotechnologies. Reports of NAS of Ukraine, 6, 110–113.
  4. Solodkii, N. F., Shamrikov, A. S., Pogrebenkov, V. M. (2009). Mineral resources base of the Urals for ceramic, refractory and glass industries. Handbook. Edited by prof. Maslennikova G. N. Tomsk: Tomsk Polytechnic University, 332.
  5. Isupov, V. P. (1999). Intercalation compounds of aluminum hydroxide. Journal of Structural Chemistry. Springer Science + Business Media, 40 (5), 832–848. doi:10.1007/bf02903444
  6. Isupov, V. P., Nemudry, A. P., Kotsupalo, N. P., Samsonov, T. I. (1982). About interaction of aluminum hydroxide with aqueous solutions of lithium chloride. Conference on the Chemistry and Technology of rare, nonferrous metals and salts: Abstracts of reports. Frunze: Ilim., 336.
  7. Nemudry, A. P., Isupov, V. P., Kotsupalo, N. P. (1983). On the mechanism of interaction of hydrargillite with aqueous solutions of lithium chloride. VI Union Conference on the Chemistry and Technology of Rare Alkaline Elements: Abstracts of reports. Moscow Science, 9–10.
  8. Burba, J. L. (1983). Crystalline lithium aluminates. Patent № 4348295 (USA).
  9. Isupov, V. P., Chupakhina, L. E. (1994). Intercalation Method for the Production of Active Aluminium Hydroxide. Chemistry for Sustainable Development, 2 (2-3), 535–539.
  10. Lavrentyev, A. A., Gabrelian, B. V., Shkumat, P. N., Kulagin, B. B., Nikiforov, I. Y. (2011). The influence of magnetic ordering on the electronic energy structure of CuFeS2. Journal of Structural Chemistry. Pleiades Publishing Ltd., 52, S65–S68 doi:10.1134/s0022476611070080
  11. Stoller, M. D., Park, S., Zhu, Y., An, J., Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Lett., 8 (10), 3498–3502. doi:10.1021/nl802558y
  12. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., Chen, Y. (2009). Supercapacitor Devices Based on Graphene Materials. The Journal of Physical Chemistry C, 113 (30), 13103–13107. doi:10.1021/jp902214f
  13. Hu, J., Lu, Q., Deng, B., Tang, K., Qian, Y., Li, Y., Liu, X. (1999). A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications, 2 (12), 569–571. doi:10.1016/s1387-7003(99)00154-9
  14. Komatsu, K., Kuribayashi, T., Kudoh, Y., Kagi, H. (2007). Crystal structures of high-pressure phases in the alumina-water system: I. Single crystal X-ray diffraction and molecular dynamics simulation of η-Al(OH)3. Zeitschrift Für Kristallographie, 222 (1), 1–12. doi:10.1524/zkri.2007.222.1.1
  15. Kriens, M., Adiwidjaja, G., Guse, W., Klaska, K. H., Lathe, C., Saalfeld, H. (1996). The crystal structures of LiAl5O8 and Li2Al4O7. Neues Jahrbuch fuer Mineralogie. Monatshefte, 344–350.
  16. Kabanov, B. N., Chekavtsev, A. V., Petukhova, P. I., Tomashova, N. N., Kiselev, I. G. (1986). Cathodic introduction of lithium into graphite, glassy carbon and aluminum. Russian Journal of Electrochemistry, 22 (3), 415–417.
  17. Stoinov, Z. B., Grafov, B. M., Savova-Stoinova, B. S., Yolkin, V. V. (1991). Electrochemical Impedance. Moscow, USSR: Science, 336.
  18. Sementsov, Yu. I, Pjatkovskyy, M. L. (2008). Thermaly expanded graphite. Inorganic materials science. Encyclopeadic edition in two volumes, 2 (2), 410–425
  19. Ferrari, A. C., Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8 (4), 235–246. doi:10.1038/nnano.2013.46
  20. Nemanich, R., Solin, S. (1979). First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B., 12 (20), 392. [http://dx.doi.org/10.1103/PhysRevB.20.392].
  21. Nemanich, R. J., Solin, S. A. (1977). Observation of an anomolously sharp feature in the 2nd order Raman spectrum of graphite. Solid State Communications. Elsevier BV, 23, 417–420. doi:10.1016/0038-1098(77)90998-x
  22. Vidano, R. P., Fischbach, D. B., Willis, L. J., Loehr, T. M. (1981). Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Communications, 39 (2), 341–344. doi:10.1016/0038-1098(81)90686-4
  23. Tuck, Clive D. S. (1991). Modern battery technology. New York, USA: Ellis Horwook, 579.

Published

2014-08-13

How to Cite

Григорчак, І. І., Швець, Р. Я., Біщанюк, Т. М., Балук, В. І., Курепа, А. С., Кулик, Ю. О., Семенцов, Ю. І., & Довбешко, Г. І. (2014). New intercalation modified structures of natural minerals for high-efficient Li+-cationic electricity generation. Eastern-European Journal of Enterprise Technologies, 4(5(70), 56–65. https://doi.org/10.15587/1729-4061.2014.26266