Construction of aggregates of features of the building complex of the territory for conceptual grouping scheme

Authors

  • Ольга Михайловна Залунина Kremenchuk Mykhailo Ostrohradskyi National University, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26278

Keywords:

construction industry, building complex, feature space, consistency criterion, correlation coefficient

Abstract

Improving the efficiency of the strategic development plans of the construction industry is possible by studying and elaborating the clustering algorithm of Ukrainian regions in the construction sphere.

The aggregation algorithm of the feature space of the building complex of the territory was considered in the paper.

The building complex of each area is described by a set of characteristics that can be called features. Herewith, the system of considered estimated figures cannot be fully used for the regional differentiation within the Ukraine since a number of indicators that form the system conditions are of national nature and do not contain a specific set of numerical and categorical data.

Achieving the goal of improving the efficiency of the strategic development of the construction industry is possible provided solving the following problem: to construct an aggregation algorithm of features, allowing to determine the essential factors of influence and reduce the space dimension in clustering objects.

The algorithm, considered in the paper is based on using two criteria: the correlation coefficient and the consistency criterion. This allows to reduce the dimension of the feature space of the building complex of the territory.

As a result of the study, aggregates of indicators, in which the consistency criterion is equal to zero, were obtained.

A study of the proposed algorithm allows to conclude on the presence of consistent relationships between the indicators, forming the functioning of the building complex of the region. It is an intermediate step in constructing the conceptual grouping schema of areas, as well as allows to construct a more accurate clustering of areas for management decision-making in the construction sector.

Author Biography

Ольга Михайловна Залунина, Kremenchuk Mykhailo Ostrohradskyi National University

Cand. Sci (Tech.) Assoc. Prof.

Department of Management

References

  1. Kaplan, L. M. (1991). Problemy perestrojki jekonomiki stroitel'stva pri perehode k reguliruemomu rynku. Jekonomika stroitel'stva, 2, 65–88.
  2. Kulibanov, V. S. (1989). Territorial'nye aspekty upravlenija stroitel'stvom. Jekonomika stroitel'stva, 1, 12–42.
  3. Usov, A. V., Maksimov, S. S. (2014). Primenenie modeli kalendarnogo planirovanija dlja proektnogo upravlenija v stroitel'stve. Eastern-European Journal of Enterprise Technologies, 1/4 (67), 39–42.
  4. Jaroshenko, F. O., Efimenko, T. І., Geec', V. M., Lіbanova, E. M. (2011). Derzhavnij bjudzhet і bjudzhetna strategіja 2012–2014: stabіlіzacіja ta stalij rozvitok v umovah reformuvannja ekonomіki Ukraїni. Kiev: DNNU „Akad. fіn. upravlіnnja”, 702.
  5. Suhorukov, A. I., Morkva, O. P. Stroitel'nyj rynok v mire i Ukraine. Analitika kompanij. Gazeta «Biznes». Available at: www.business.ua /analutics/1167/.
  6. Andruhov, V. M., Martinova, L. V. (2010). Perspektivnі naprjamki vdoskonalennja dіjal'nostі organіzacіj budіvel'noї galuzі Ukraini. Budіvnictvo Ukraїni, 5, 2–6.
  7. Gromov, O. Dmitro Іsaєnko: Protjagom roku mi pіdgotuєmo dovgostrokovu programu rozvitku rinku budіvel'nih materіalіv. Urjadovij kur’er, № 45. Available at: http://www.ukurier.gov.ua/uk/articles/dmitro-isayenko-protyagom-roku-mi-pidgotuyemo-dovg/. Last accessed 13.03.2012.
  8. Pomitov, S. A. Mirovaja jekonomika. Opyt sozdanija klasternyh struktur. Available at : http:// ekportal.ru/page-id-1910.html.
  9. Pomitov, S. A. Mirovaja jekonomika. Klastery: harakteristika i modeli. Available at : http:// ekportal.ru/page-id-1805.html.
  10. Estivill-Castro, V. (2002). Why so many clustering algorithms. SIGKDD Explor. Newsl., 4 (1), 65–75. doi:10.1145/568574.568575
  11. Székely, G. J., Rizzo, M. L. (2005). Hierarchical clustering via Joint BetweenWithin Distances: Extending Ward’s Minimum Variance Method. Journal of Classification, 22 (2), 151–183. doi: 10.1007/s00357-005-0012-9
  12. Zalunina, O. M. (2014). Strukturirovanie kljuchevyh jekonomicheskih pokazatelej informacionnogo polja stroitel'nogo sektora Ukrainy. Vіsnik Kremenchuc'kogo nacіonal'nogo unіversitetu іmenі Mihajla Ostrograds'kogo, 1, 52–59.
  13. Ivahnenko, A. G., Koppa, Ju. V., Petruhova, S. A., Ivahnenko, N. A. (1985). Primenenie samoorganizacii dlja razbienija mnozhestva dannyh na zaranee nezadannoe chislo klasterov. Avtomatika i telemehanika, 5, 9–16.
  14. Braverman, Je. M., Muchnik, I. B. (1983). Strukturnye metody obrabotki jempiricheskih dannyh. Moscow: Nauka, 464.
  15. Mirkin, B. G. (1985). Gruppirovki v social'no-jekonomicheskih issledovanijah. Metody postroenija analiza. Moscow: Finansy i statistika, 223.
  16. Ivahnenko, A. G., Petruhova, S. A., Ivahnenko, N. A. (1986). Ob’ektivnaja komp'juternaja klasterizacija. Teoreticheskie voprosy. Avtomatika i telemehanika, 3, 3–11.

Published

2014-07-24

How to Cite

Залунина, О. М. (2014). Construction of aggregates of features of the building complex of the territory for conceptual grouping scheme. Eastern-European Journal of Enterprise Technologies, 4(3(70), 29–33. https://doi.org/10.15587/1729-4061.2014.26278

Issue

Section

Control processes