Determination of elastic constants of anisotropic heavy petroleum product using molecular dynamics simulation

Authors

  • Maksym Stetsenko Odesa National Maritime Academy, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26313

Keywords:

normal paraffin, resin, asphaltene, molecular dynamics, force field, elastic constants

Abstract

For the purpose of experimental verification of the assumption that the elastic properties of heavy petroleum can be characterized by a matrix of elasticity for a transversely isotropic medium, molecular dynamics simulation studies were performed. It is shown that the main structural elements of heavy petroleum are some saturated hydrocarbons, resin-solvated asphaltenes and self-associated asphaltenes. The obtained numerical results of the Young's modulus, shear modulus and Poisson's ratio in a wide temperature range for these compounds suggest that their elastic properties are closer in nature to the properties of solids, rather than amorphous entities. The method presented for determining the elasticity of a complex material in this paper can be found convenient and sufficiently accurate. This is so, since by analyzing the molecular composition of a complex compound and defining the main structural elements of it, properties of each of them can be estimated separately, in a first place, and then a general result can be derived for a substance as a whole.

Numerical results obtained in this research may be useful for those who are interested in heavy petroleum fractions rheology, and those who perform numerical studies in petroleum hydrodynamics and acoustics.

Author Biography

Maksym Stetsenko, Odesa National Maritime Academy

Fleet Technical Operation Department.

 PhD candidate

References

  1. Siuniayev, Z. I., Safiieva, R. Z. & Siuniayev, R. Z. (1990). Petroleum dispersion systems. Moscow: Himiya, 226. [in Russian]

    Speight, J. (2014). The Chemistry and Technology of Petroleum. Ed. 5. Boca Raton, London, New York: CRC Press, 913. doi:10.1201/9780824742119.

    Kotelnikova, Ye. N. & Filatov, S. K. (2002). Crystal chemistry of paraffins: Methods, researches, results, behavior in nature. St. Petersburg: Zhurnal Neva [in Russian]

    Venkatesan, R., Nagarajan, N. R., Paso, K., Yi, Y.-B., Sastry, A. M. & Fogler, H. S. (2005). The strength of paraffin gels formed under static flow. Chemical Engineering Science, 60(13), 3587–3598. doi:10.1016/j.ces.2005.02.045.

    Zhao, Y., Kumar, L., Paso, K., Safieva, J., Sariman, M. Z. & Sjöblom, J. (2012). Gelation Behavior of Model Wax–Oil and Crude Oil Systems and Yield Stress Model Development. Energy and Fuels, 26(10), 6323–6331. doi: 10.1021/ef3012454.

    Bagheri, S. R., Bazyleva, A., Gray, M. R., McCaffrey, W. C. & Shaw, J. M. (2010). Observation of Liquid Crystals in Heavy Petroleum. Energy and Fuels, 24(8), 4327–4332. doi: 10.1021/ef100376t.

    Diallo, M. S., Cagin, T., Faulon, J. L., & Goddard, W. A., III. (2000). Chapter 5 Thermodynamic Properties of Asphaltenes: A Predictive Approach Based on Computer Assisted Structure Elucidation and Atomistic Simulations. Asphaltenes and Asphalts, 2. Developments in Petroleum Science, Vol. 40, Part B, 103–127. doi:10.1016/s0376-7361(09)70276-6.

    Headen, T., Boek, E. & Skipper, N. (2009). Evidence for Asphaltene Nano-aggregation in Toluene and Heptane from Molecular Dynamics Simulations. Energy Fuels, 23(3), 1220–1229. doi: 10.1021/ef800872g.

    Greenfield, M. & Zhang, L. (2009). Developing model asphalt systems using molecular simulation (Report No.000216). Kingston: Dept. of Chemical Engineering University of Rhode Island. Available: http://www.uritc.org/media/finalreportspdf/000216.pdf.

    Ding, H., Chen, W., Zhang, L. (2006). Elasticity of Transversely Isotropic Materials. Solid Mechanics and Its Applications, V. 126. Dordreht: Springer, 443. doi:10.1007/1-4020-4034-2.

    In: Yip, S. (2005). Handbook of Materials Modeling. Part B. Models. Dordrecht, Berlin, Heidelberg, New York: Springer. doi:10.1007/1-4020-3286-2.

    Martyna, G. Tobias, D. & Klein, M. (1994). Constant pressure molecular dynamics algorithms. J. Chem. Phys, 101(5), 4177–4189. doi: 10.1063/1.467468.

    Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys, 117(1), 1–19. doi: 10.1006/jcph.1995.1039.

    Mayo, S., Olafson, B. & Goddard III, W. (1990). DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem., 94(26), 8897–8909. doi: 10.1021/j100389a010.

    Priyanto, S., Mansoori, G. & Suwono, A. (2001). Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent. Chemical Engineering Science, 56(24), 6933–6939. doi: 10.1016/S0009-2509(01)00337-2.

    Gawrys, K. L. (2005). How asphaltenes aggregate: role of chemistry and solvent (PhD dissertation, North Carolina State University). Raleigh, 410. Available: http://repository.lib.ncsu.edu/ir/bitstream/1840.16/3601/1/etd.pdf.

    Field, M. (2007). A Practical Introduction to the Simulation of Molecular Systems. Ed. 2. New York: Cambridge University Press. doi:10.1017/cbo9780511619076.

    He, C., Liu, P. & Griffin, A. (1998). Toward negative Poisson ratio polymers through molecular design. Macromolecules, 31(9), 3145–3147. doi: 10.1021/ma970787m.

    Kang, D., Mahajan, M. P., Zhang, S., Petschek, R. G., Rosenblatt, C., He, C., Griffin, A. C. (1999). Pretransitional behavior above the nematic-isotropic phase transition of an auxetic trimmer liquid crystal. Phys. Rev. E., 60(4), 4980–4982. doi: 10.1103/PhysRevE.60.4980.

    Wang, Y. C. & Lakes, R. S. (2005). Composites with inclusions of negative bulk modulus: Extreme damping and negative Poisson’s ratio. Journal of Composite Materials, 39(18), 1645-1657. doi: 10.1177/0021998305051112.

Downloads

Published

2014-10-13

How to Cite

Stetsenko, M. (2014). Determination of elastic constants of anisotropic heavy petroleum product using molecular dynamics simulation. Eastern-European Journal of Enterprise Technologies, 5(6(71), 37–44. https://doi.org/10.15587/1729-4061.2014.26313

Issue

Section

Technology organic and inorganic substances