Investigation of fluid dynamics in microfracture channels

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.263480

Keywords:

non-Newtonian fluids, structural viscosity, plane-radial cracks, shear stress, plane parallel crack, shear rate

Abstract

The object of the work is an experimental study of the features of the movement of viscous and anomalous fluids in plane-parallel and plane-radial microcracks.

In the work, the unexplored problem of hydrodynamic features of fluid motion in the considered objects – channels is solved.

It was experimentally revealed that various fluids, when moving in microcracked channels with micron-sized openings, acquire new mechanical properties, which differ from their properties in the usual condition. The effect in the “microcrack-fluid” system is the reason for changes in the mechanical properties of fluids in microcracks and equivalent ultra-low-permeable porous media. It was revealed that when a one-parameter viscous fluid moves in a crack with an opening h<hcr, it becomes two-parameter, i.e. behaves like an anomalous fluid, and when moving with an opening h≥hcr, it restores one-parameter properties, and the anomalous fluid behaves like an anomalous fluid but increases the rheological constants of the model.

The results of the research require taking into consideration the crack effect in estimating the parameters of the technological processes system and technical devices “microcrack-fluid”. Machines and mechanisms must additionally have nodes that would prevent this effect. This is of scientific and practical importance for various fields of the industry, machine manufacturing, instrument manufacturing, chemical technology and medicine.

Author Biography

Maleyka Mammadova, Azerbaijan State Oil and Industry University

PhD, Professor

Department of Industrial Machines

References

  1. Lomize, G. M. (1951). Fil'tratsiya v treschinovatykh porodakh. Moscow: Goseneroizdat, 127.
  2. Tarasevich, V. V., Podryabinkin, E. V., Rudyak, V. Ya. (2012). Modelirovanie techeniy nen'yutonovskoy zhidkosti v mezhtrubnom prostranstve pri postupatel'nom dvizhenii vnutrenney truby. Doklady IV vserossiyskoy konferentsii «Fundamental'nye osnovy MEMS- i nanotekhnologiy». Novosibirsk, 323–328.
  3. Sokolov, V. I., Rasskazova, Yu. B. (2016). Modeling of fluid flow in microgaps with the boundary change of viscosity. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni Volodymyra Dalia, 2 (226), 20–25. Available at: https://core.ac.uk/download/84593448.pdf
  4. Grachev, S. I., Korotenko, V. A., Kushakova, N. P., Kryakvin, A. B., Zotova, O. P. (2019). Liquid filtration in anomalous collectors. Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov, 330 (7), 104–113. doi: https://doi.org/10.18799/24131830/2019/7/2183
  5. Podryabinkin, E. V., Rudyak, V. Y. (2011). Moment and forces exerted on the inner cylinder in eccentric annular flow. Journal of Engineering Thermophysics, 20 (3), 320–328. doi: https://doi.org/10.1134/s1810232811030106
  6. Bondareva, М. V., Korzhov, E. N. (2012). Investigation of fluid flow in the gap between eccentric cylindrical and conical surfaces. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional'nogo issledovatel'skogo universiteta), 3 (34), 127–134. Available at: https://cyberleninka.ru/article/n/issledovanie-techeniy-zhidkosti-v-schelevom-zazore-mezhdu-ekstsentricheskimi-tsilindricheskoy-i-konicheskoy-poverhnostyami
  7. Zakirov, S. N., Barenbaum, A. A., Zakirov, E. S., Indrupskiy, I. M., Serebryakov, V. A., Klimov, D. S. (2016). Revisiting the Development of Oil Deposits with Low Permeability Reservoirs. Indian Journal of Science and Technology, 9 (42). doi: https://doi.org/10.17485/ijst/2016/v9i42/104219
  8. Liu, W., Yao, J., Chen, Z., Liu, Y. (2015). Effect of quadratic pressure gradient term on a one-dimensional moving boundary problem based on modified Darcy’s law. Acta Mechanica Sinica, 32 (1), 38–53. doi: https://doi.org/10.1007/s10409-015-0526-2
  9. Svalov, A. M. (2011). Kapillyarnye effekty v treschinovatykh porodakh. Neftyanoe khozyaystvo, 1, 59–63.
  10. Gabibov, I. A., Seidahmedov, N. S. (2015). Motion equations of plates of direct-flow valves for reciprocating compressors, working in the gas-lift oil well operation system. Eastern-European Journal of Enterprise Technologies, 4 (7 (76), 34–38. doi: https://doi.org/10.15587/1729-4061.2015.48234
  11. Seyidahmadov, N. (2019). Evaluation of gas separator effect on operability of gas-motor piston compressor valves. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 17–21. doi: https://doi.org/10.15587/1729-4061.2019.179373
  12. Gurbanov, R. S., Mamedova, M. A., Gurbanova, T. G. (2015). Development of the sealing method of the pump clearance by well production. Eastern-European Journal of Enterprise Technologies, 5 (1 (77)), 59–62. doi: https://doi.org/10.15587/1729-4061.2015.51958
  13. Gurbanov, R. S., Mamedova, M. A. (2013). Metodicheskoe rukovodstvo po razrabotke mestorozhdeniy treschinovatykh porod s n'yutonovskimi i nen'yutonovskimi neftyami. Baku: Izdatel'stvo AGNA, 62.
  14. Mamedova, M. A., Gurbanov, R. S. (2015). Investigation of the Rheology of Fluids in Fracture and Pore Channels and Determination of Their Opening. Journal of Engineering Physics and Thermophysics, 88 (4), 815–824. doi: https://doi.org/10.1007/s10891-015-1256-9
  15. Gurbanov, R. S., Mammadova, M. A. (2015). Rheological peculiarities of fluids flow in microcracked channels. Mechanics, 21 (1). doi: https://doi.org/10.5755/j01.mech.21.1.10128
  16. Mirzadzhanzade, A. Kh. (1959). Voprosy gidrodinamiki vyazkoplastichnykh i vyazkikh zhidkostey v primenenii k neftedobyche. Baku: Aznefteizdat, 409. Available at: https://search.rsl.ru/ru/record/01006350927
  17. Shul'man, Z. P. (1975). Konvektivniy teplomassoperenos reologicheski slozhnykh zhidkostey. Moscow: Energiya, 352.

Downloads

Published

2022-08-30

How to Cite

Mammadova, M. (2022). Investigation of fluid dynamics in microfracture channels. Eastern-European Journal of Enterprise Technologies, 4(7 (118), 42–50. https://doi.org/10.15587/1729-4061.2022.263480

Issue

Section

Applied mechanics