Activation of nickel foam, as a current collector of a supercapacitor, by impact nickel plating: influence of treatment conditions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265706

Keywords:

nickel foam, impact nickel, activation, current collector, supercapacitor, specific capacitance, cyclic voltammetry, charge-discharge cycling, surface development

Abstract

Nickel foam is widely used as a current lead/current collector and as the base of nickel hydroxide electrodes for hybrid supercapacitors. An investigation of the influence of activation conditions for a commercial sample of nickel foam produced by Linyi Gelon LIB Co Ltd (China) was carried out using the method of impact nickel plating. The morphology of activated and non-activated nickel foam samples was investigated by scanning electron microscopy. Activated and non-activated nickel foam samples were investigated by methods of cyclic voltammetry and galvanostatic charge-discharge cycling in the supercapacitor mode.

It was shown that upon activation at i=1 A/dm2 and τ=10 min, a thin layer of porous nickel with incomplete coverage was formed. Activation with impact nickel at i=7 A/dm2 and τ=3 min revealed the formation of a nickel coating with a highly developed surface, on which local cracks were found as a result of the accumulation of internal stresses. Activation with impact nickel at i=1 A/dm2 and τ=10 min led to the formation of a coating with a highly developed surface, with significant peeling of the coating.

Cyclic voltammetry showed high efficiency of impact nickel activation at i=7 A/dm2, τ=3 min, and i=20 A/dm2, τ=5 min. The specific current of the cathode peak increased 6.06–6.44 times with respect to the non-activated sample. The investigation of the activated samples' electrochemical characteristics by the galvanostatic cycling method showed that impact nickel activation at i=1 A/dm2 and τ=10 min was insufficient. It was found that at a discharge up to E=0 V, the maximum specific capacitance of 0.731 F/cm2 was obtained for samples activated by impact nickel at i=7 A/dm2 and τ=3 min. The increase in specific capacitance compared to the non-activated sample was 4.49 times. At full discharge, the highest electrochemical activity was found for nickel foam samples activated by impact nickel at i=20 A/dm2 and τ=5 min. The specific capacitance was 0.505 mA∙h/cm2, and it increased 9.02 times

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics

Valerii Kotok, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Volodymyr Verbitskiy, National Pedagogical Dragomanov University

Doctor of Pedagogical Sciences, Professor, Director

Department of Medical, Biological and Valeological Basics of Life and Health Protection

Volodymyr Medianyk, Dnipro University of Technology

PhD, Associate Professor

Department of Mining Engineering and Education

References

  1. Medianyk, V., Cherniaiev, O. (2018). Technological aspects of technogenic disturbance liquidation in the areas of coal-gas deposits development. E3S Web of Conferences, 60, 00037. doi: https://doi.org/10.1051/e3sconf/20186000037
  2. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: https://doi.org/10.1038/nmat2297
  3. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011
  4. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: https://doi.org/10.1007/s10008-009-0984-1
  5. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: https://doi.org/10.1007/s10008-008-0560-0
  6. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: https://doi.org/10.1007/s10008-014-2381-7
  7. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  8. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: https://doi.org/10.1021/am504530e
  9. Kotok, V., Кovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
  10. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  11. Chen, M., Xiong, X., Yi, C., Ma, J., Zeng, X. (2014). Ni(OH)2–NiO–NiF Compound Film on Nickel with Superior Pseudocapacitive Performance Prepared by Anodization and Post-hydrothermal Treatment Methods. Journal of Inorganic and Organometallic Polymers and Materials, 25 (4), 739–746. doi: https://doi.org/10.1007/s10904-014-0152-7
  12. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  13. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  14. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  15. Yu, X., Hua, T., Liu, X., Yan, Z., Xu, P., Du, P. (2014). Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 6 (17), 15395–15402. doi: https://doi.org/10.1021/am503938c
  16. Xiao, J., Zhang, X., Gao, T., Zhou, C., Xiao, D. (2017). Electrochemical formation of multilayered NiO film/Ni foam as a high-efficient anode for methanol electrolysis. Journal of Solid State Electrochemistry, 21 (8), 2301–2311. doi: https://doi.org/10.1007/s10008-017-3570-y
  17. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  18. Kotok, V. A., Kovalenko, V. L. (2019). Non-Metallic Films Electroplating on the Low-Conductivity Substrates: The Conscious Selection of Conditions Using Ni(OH)2 Deposition as an Example. Journal of The Electrochemical Society, 166 (10), D395–D408. doi: https://doi.org/10.1149/2.0561910jes
  19. Salleh, N. A., Kheawhom, S., Mohamad, A. A. (2020). Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arabian Journal of Chemistry, 13 (8), 6838–6846. doi: https://doi.org/10.1016/j.arabjc.2020.06.036
  20. Grdeń, M., Alsabet, M., Jerkiewicz, G. (2012). Surface Science and Electrochemical Analysis of Nickel Foams. ACS Applied Materials & Interfaces, 4 (6), 3012–3021. doi: https://doi.org/10.1021/am300380m
  21. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 13 (24), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  22. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
  23. Liu, C., Huang, L., Li, Y., Sun, D. (2009). Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO32−. Ionics, 16 (3), 215–219. doi: https://doi.org/10.1007/s11581-009-0383-8
  24. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  25. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  26. Xiao-yan, G., Jian-cheng, D. (2007). Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 61 (3), 621–625. doi: https://doi.org/10.1016/j.matlet.2006.05.026
  27. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binder­free electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4 (12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899
  28. Tizfahm, J., Safibonab, B., Aghazadeh, M., Majdabadi, A., Sabour, B., Dalvand, S. (2014). Supercapacitive behavior of β-Ni(OH) 2 nanospheres prepared by a facile electrochemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 544–551. doi: https://doi.org/10.1016/j.colsurfa.2013.12.024
  29. Aghazadeh, M., Golikand, A. N., Ghaemi, M. (2011). Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. International Journal of Hydrogen Energy, 36 (14), 8674–8679. doi: https://doi.org/10.1016/j.ijhydene.2011.03.144
  30. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  31. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  32. Liang, K., Tang, X., Hu, W. (2012). High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. Journal of Materials Chemistry, 22 (22), 11062. doi: https://doi.org/10.1039/c2jm31526b
  33. Navale, S. T., Mali, V. V., Pawar, S. A., Mane, R. S., Naushad, M., Stadler, F. J., Patil, V. B. (2015). Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Advances, 5 (64), 51961–51965. doi: https://doi.org/10.1039/c5ra07953e
  34. Yuan, Y. F., Xia, X. H., Wu, J. B., Yang, J. L., Chen, Y. B., Guo, S. Y. (2011). Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochimica Acta, 56 (6), 2627–2632. doi: https://doi.org/10.1016/j.electacta.2010.12.001
  35. Peng, H., Jing, C., Chen, J., Jiang, D., Liu, X., Dong, B. et. al. (2019). Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm, 21 (3), 470–477. doi: https://doi.org/10.1039/c8ce01861h
  36. Nie, Y., Pan, J., Jiang, W., Pan, J., Liu, J., Sun, Y. et. al. (2020). A facile preparation of Nickel Foam-supported Ni(OH)2 nano arrays via in-situ etching method with superior bendable electrochemical performance for wearable power supply. Journal of Alloys and Compounds, 835, 155293. doi: https://doi.org/10.1016/j.jallcom.2020.155293
  37. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  38. Yang, G.-W., Xu, C.-L., Li, H.-L. (2008). Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications, 48, 6537. doi: https://doi.org/10.1039/b815647f
  39. Chao, Y., Xin-Bo, X., Zhi-Biao, Z., Jun-Jie, L., Tuo, H., Bin, L. et. al. (2015). Fabrication of Nickel-Based Composite Film Electrode for Supercapacitors by a New Method of Anodization/GCD. Acta Physico-Chimica Sinica, 31 (1), 99–104. doi: https://doi.org/10.3866/pku.whxb201411053
  40. Gu, L., Wang, Y., Lu, R., Guan, L., Peng, X., Sha, J. (2014). Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors. J. Mater. Chem. A, 2 (20), 7161–7164. doi: https://doi.org/10.1039/c4ta00205a
  41. Visscher, W., Barendrecht, E. (1980). The anodic oxidation of nickel in alkaline solution. Electrochimica Acta, 25 (5), 651–655. doi: https://doi.org/10.1016/0013-4686(80)87072-1
  42. Seghiouer, A., Chevalet, J., Barhoun, A., Lantelme, F. (1998). Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling. Journal of Electroanalytical Chemistry, 442 (1-2), 113–123. doi: https://doi.org/10.1016/s0022-0728(97)00498-1
  43. Cai, G., Wang, X., Cui, M., Darmawan, P., Wang, J., Eh, A. L.-S., Lee, P. S. (2015). Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 12, 258–267. doi: https://doi.org/10.1016/j.nanoen.2014.12.031
  44. Atalay, F. E., Aydogmus, E., Yigit, H., Avcu, D., Kaya, H., Atalay, S. (2014). The Formation of Free Standing NiO Nanostructures on Nickel Foam for Supercapacitors. Acta Physica Polonica A, 125 (2), 224–226. doi: https://doi.org/10.12693/aphyspola.125.224
  45. Yadav, A. A., Chavan, U. J. (2016). Influence of substrate temperature on electrochemical supercapacitive performance of spray deposited nickel oxide thin films. Journal of Electroanalytical Chemistry, 782, 36–42. doi: https://doi.org/10.1016/j.jelechem.2016.10.006
  46. Xiong, X., Zhang, J., Ma, J., Zeng, X., Qian, H., Li, Y. (2016). Fabrication of porous nickel (hydr)oxide film with rational pore size distribution on nickel foam by induction heating deposition for high-performance supercapacitors. Materials Chemistry and Physics, 181, 1–6. doi: https://doi.org/10.1016/j.matchemphys.2016.06.038
  47. Fares, M., Debili, M. Y. (2016). NiO Formation by Simple Air Oxidation of Nickel Coated Carbon Fibers. Journal of Advanced Microscopy Research, 11 (2), 127–129. doi: https://doi.org/10.1166/jamr.2016.1302
  48. Lamiel, C., Nguyen, V. H., Kumar, D. R., Shim, J.-J. (2017). Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications. Chemical Engineering Journal, 316, 1091–1102. doi: https://doi.org/10.1016/j.cej.2017.02.004
  49. Кovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  50. Ansari, S. A., Parveen, N., Al-Othoum, M. A. S., Ansari, M. O. (2021). Effect of Washing on the Electrochemical Performance of a Three-Dimensional Current Collector for Energy Storage Applications. Nanomaterials, 11 (6), 1596. doi: https://doi.org/10.3390/nano11061596
  51. Bakar, N. A. A., Salleh, N. A., Hamid, N. A. A., Abdullah, C. A. C., Rahiman, W., Kheawhom, S., Mohamad, A. A. (2022). Electrochemical Characterization of Cleaning Nickel Foam Current Collector for Supercapacitor Application. Proceedings of the 7th International Corrosion Prevention Symposium for Research Scholars, 145–158. doi: https://doi.org/10.1007/978-981-19-1851-3_13
  52. Bakar, N. A. A., Salleh, N. A., Hamid, N. A. A., Abdullah, C. A. C., Rahiman, W., Basirun, W. J. et. al. (2022). The effect different of hydrochloric acid concentrations on the cleaning of Ni foam substrate: Structural and morphological studies. Materials Today: Proceedings, 60, 1036–1041. doi: https://doi.org/10.1016/j.matpr.2022.01.227
  53. Yu, D., Li, Z., Zhao, G., Zhang, H., Aslan, H., Li, J. et. al. (2019). Porous Ultrathin NiSe Nanosheet Networks on Nickel Foam for High‐Performance Hybrid Supercapacitors. ChemSusChem, 13 (1), 260–266. doi: https://doi.org/10.1002/cssc.201901766
  54. Kovalenko, V., Kotok, V. (2021). Comparative investigation of different types of nickel foam samples for application in supercapacitors and other electrochemical devices. Eastern-European Journal of Enterprise Technologies, 3 (12 (111)), 32–38. doi: https://doi.org/10.15587/1729-4061.2021.234251
Activation of nickel foam, as a current collector of a supercapacitor, by impact nickel plating: influence of treatment conditions

Downloads

Published

2022-10-30

How to Cite

Kovalenko, V., Kotok, V., Verbitskiy, V., & Medianyk, V. (2022). Activation of nickel foam, as a current collector of a supercapacitor, by impact nickel plating: influence of treatment conditions. Eastern-European Journal of Enterprise Technologies, 5(12 (119), 47–54. https://doi.org/10.15587/1729-4061.2022.265706

Issue

Section

Materials Science