Models of adaptive integration of weighted interval data in tasks of predictive expert assessment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265782

Keywords:

predictive assessment, complexing, alternative data, interval analysis, confidence probability

Abstract

The problem of improving the methodological and algorithmic support of the complexing process by developing models of adaptive redundant complexing of weighted interval data has been solved. The object of this study is the process of complexing interval data obtained from several independent sources; the subject is the algebraic methods of excessive complexing of weighted interval data. The relevance of the task is due to the severity of the problem of consolidating homogeneous data in order to obtain more accurate and relevant information about the object or process under study. Models have been developed that, unlike the existing ones, make it possible a posteriori to take into account the accuracy of experts at the preliminary stage of expert evaluation. A single analytical form of the model for processing weighted interval and point estimates with the possibility of structural and parametric tuning is proposed. It allows one to increase the degree of automation of processing expert assessments under conditions of interval uncertainty. Recommendations for the practical application of the proposed models have been formulated. Options for parametric configuration of preference functions were indicated depending on the characteristics of weighted interval estimates. The commonality of the limiting cases of the proposed models with previously known ones is proved. The example shows the shift of the integrated assessment to the side of more accurate assessments at the previous stage of source assessment. The adaptability of the proposed models is illustrated. At the same time, a slight, on average, about 10 %, expansion of the complexed interval relative to the primary ones was registered. The built models and algorithms can be used in automated expert systems, as well as in cascade models of information processing and compression.

Author Biographies

Igor Ruban, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor, First Vice-Rector

Hennadii Horenskyi, Kharkiv National University of Radio Electronics

Department of Electronic Computers

Yuri Romanenkov, National Aerospace University "Kharkiv Aviation Institute"

Doctor of Technical Sciences, Professor

Department of Management

Daniil Revenko, National Aerospace University "Kharkiv Aviation Institute"

Doctor of Economic Sciences, Associate Professor

Department of Economics, Marketing and International Economic Relations

References

  1. Preis, T., Moat, H. S., Stanley, H. E. (2013). Quantifying Trading Behavior in Financial Markets Using Google Trends. Scientific Reports, 3 (1). doi: https://doi.org/10.1038/srep01684
  2. Nasseri, A. A., Tucker, A., de Cesare, S. (2015). Quantifying StockTwits semantic terms’ trading behavior in financial markets: An effective application of decision tree algorithms. Expert Systems with Applications, 42 (23), 9192–9210. doi: https://doi.org/10.1016/j.eswa.2015.08.008
  3. Kolanovic, M., Krishnamachari, R. T. (2017). Big data and AI strategies: Machine learning and alternative data approach to investing. Global Quantitative & Derivatives Strategy. Available at: https://cpb-us-e2.wpmucdn.com/faculty.sites.uci.edu/dist/2/51/files/2018/05/JPM-2017-MachineLearningInvestments.pdf
  4. Cohen, L., Malloy, C., Nguyen, Q. (2020). Lazy Prices. The Journal of Finance, 75 (3), 1371–1415. doi: https://doi.org/10.1111/jofi.12885
  5. Fleder, M., Shah, D. (2020). Forecasting with Alternative Data. ACM SIGMETRICS Performance Evaluation Review, 48 (1), 23–24. doi: https://doi.org/10.1145/3410048.3410062
  6. Charoenwong, B., Kwan, A. (2021). Alternative Data, Big Data, and Applications to Finance. Blockchain Technologies, 35–105. doi: https://doi.org/10.1007/978-981-33-6137-9_2
  7. Bellstam, G., Bhagat, S., Cookson, J. A. (2021). A Text-Based Analysis of Corporate Innovation. Management Science, 67 (7), 4004–4031. doi: https://doi.org/10.1287/mnsc.2020.3682
  8. Romanenkov, Y., Vartanian, V. (2016). Formation of prognostic software support for strategic decision-making in an organization. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 25–34. doi: https://doi.org/10.15587/1729-4061.2016.66306
  9. Вuravtsev, A. V. (2017). Grey management analysis. Perspectives of Science & Education, 5 (29), 74–79. Available at: https://cyberleninka.ru/article/n/seryy-upravlencheskiy-analiz
  10. Chan, J. W. K., Tong, T. K. L. (2007). Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach. Materials & Design, 28 (5), 1539–1546. doi: https://doi.org/10.1016/j.matdes.2006.02.016
  11. Shostak, I. V., Danova, M. A., Romanenkov, Yu. A. (2015). Informatsionnaya tekhnologiya podderzhki prinyatiya ekspertnykh resheniy v natsional'nykh Forsayt-issledovaniyakh. Komunalne hospodarstvo mist, 123, 58–67. Available at: https://www.researchgate.net/publication/315664668_Informacionnaa_tehnologia_podderzki_prinatia_ekspertnyh_resenij_v_nacionalnyh_forsajt-issledovaniah
  12. Durrant-Whyte, H., Henderson, T. C. (2008). Multisensor Data Fusion. Springer Handbook of Robotics, 585–610. doi: https://doi.org/10.1007/978-3-540-30301-5_26
  13. Hoover, A., Olsen, B. D. (1999). A real-time occupancy map from multiple video streams. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). doi: https://doi.org/10.1109/robot.1999.770442
  14. Smelyakov, K., Sandrkin, D., Ruban, I., Vitalii, M., Romanenkov, Y. (2018). Search by Image. New Search Engine Service Model. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommst.2018.8632117
  15. Vartanyan, V. M., Cheranovskiy, O. V., Al Daheri Ali Mohamed (2011). Evaluation of basic model robust stability of unmanned aerial vehicles. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 6, 44–51. Available at: http://nbuv.gov.ua/UJRN/aktit_2011_6_9
  16. Ruban, I., Khudov, H., Khudov, V., Khizhnyak, I., Makoveichuk, O. (2017). Segmentation of the images obtained from onboard optoelectronic surveillance systems by the evolutionary method. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 49–57. doi: https://doi.org/10.15587/1729-4061.2017.109904
  17. Abdelgawad, A., Bayoumi, M. (2012). Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks. Lecture Notes in Electrical Engineering. doi: https://doi.org/10.1007/978-1-4614-1350-9
  18. Khaleghi, B., Khamis, A., Karray, F. O., Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14 (1), 28–44. doi: https://doi.org/10.1016/j.inffus.2011.08.001
  19. Sineglazov, V. M., Chumachenko, E. I., Gorbatyuk, V. S. (2012). Metod resheniya zadachi prognozirovaniya na osnove kompleksirovaniya otsenok. Induktyvne modeliuvannia skladnykh system, 4, 214–223.
  20. Bidyuk, P. I., Gasanov, A. S., Vavilov, S. E. (2013). Analiz kachestva otsenok prognozov s ispol'zovaniem metoda kompleksirovaniya. Systemni doslidzhennia ta informatsiyni tekhnolohiyi, 4, 7–16. Available at: http://nbuv.gov.ua/UJRN/sdtit_2013_4_3
  21. Vasil'ev, A. A. (2015). Obedinenie prognozov ekonomicheskikh pokazateley na osnove bives-otsenki s vesovoy funktsiey Kh'yubera. Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 10-4, 44–47. Available at: https://cyberleninka.ru/article/n/obedinenie-prognozov-ekonomicheskih-pokazateley-na-osnove-bives-otsenki-s-vesovoy-funktsiey-hyubera
  22. Molev, M. D., Zanina, I. A., Stuzhenko, N. I. (2013). Sintez prognoznoy informatsii v praktike otsenki ekologo-ekonomicheskogo razvitiya regiona. Inzhenerniy vestnik Dona, 4, 59. Available at: https://cyberleninka.ru/article/n/cintez-prognoznoy-informatsii-v-praktike-otsenki-ekologo-ekonomicheskogo-razvitiya-regiona
  23. Romanenkov, Yu. A., Vartanyan, V. M., Revenko, D. S. (2014). Kompleksirovanie prognoznykh otsenok v sisteme monitoringa pokazateley sostoyaniya biznes-protsessa. Systemy upravlinnia, navihatsiyi ta zviazku, 2 (30). Available at: https://www.researchgate.net/publication/315693915_Kompleksirovanie_prognoznyh_ocenok_v_sisteme_monitoringa_pokazatelej_sostoania_biznes-processa
  24. Kovalenko, I., Shved, A. (2018). Development of a technology of structuring group expert judgments under various types of uncertainty. Eastern-European Journal of Enterprise Technologies, 3 (4 (93)), 60–68. doi: https://doi.org/10.15587/1729-4061.2018.133299
  25. Sternin, M. Yu., Shepelev, G. I. (2009). Sravnenie poliinterval'nykh otsenok v metode OIO. Intelligent Support of Decision Making. International book series «Information science & computing, 83–88. Available at: http://foibg.com/ibs_isc/ibs-10/ibs-10-p11.pdf
  26. Shepelev, G., Sternin, M. (2014). Evaluating Expected Effectiveness of Interval Alternatives. International Journal “Information Theories and Applications”, 21 (3), 263–274. Available at: http://www.foibg.com/ijita/vol21/ijita21-03-p06.pdf
  27. Baohua Li, Yunmin Zhu, Rong Li, X. (2002). Fault-tolerant interval estimation fusion by Dempster-Shafer theory. Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997). doi: https://doi.org/10.1109/icif.2002.1021010
  28. Liu, H., Wang, B., Liu, Z., Zhou, Y. (2009). Data Fusion Based on Interval Dempster-Shafer Theory for Emitter Platform Identification. 2009 International Conference on Information Engineering and Computer Science. doi: https://doi.org/10.1109/iciecs.2009.5364227
  29. Liang, H., Li, C.-C., Dong, Y., Jiang, Y. (2016). The fusion process of interval opinions based on the dynamic bounded confidence. Information Fusion, 29, 112–119. doi: https://doi.org/10.1016/j.inffus.2015.08.010
  30. Zhu, Y., Li, B. (2006). Optimal interval estimation fusion based on sensor interval estimates with confidence degrees. Automatica, 42 (1), 101–108. doi: https://doi.org/10.1016/j.automatica.2005.07.008
  31. Ramalingam, S., Maheswari, U. (2016). A fuzzy interval valued fusion technique for multi-modal 3D face recognition. 2016 IEEE International Carnahan Conference on Security Technology (ICCST). doi: https://doi.org/10.1109/ccst.2016.7815709
  32. Carlson, R. J. (2013). Voter compatibility in interval societies. HMC Senior Theses. Available at: https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1044&context=hmc_theses
  33. Collett, M. A., Cox, M. G., Esward, T. J., Harris, P. M., Sousa, J. A. (2007). Aggregating measurement data influenced by common effects. Metrologia, 44 (5), 308–318. doi: https://doi.org/10.1088/0026-1394/44/5/007
  34. Duta, M., Henry, M. (2005). The fusion of redundant SEVA measurements. IEEE Transactions on Control Systems Technology, 13 (2), 173–184. doi: https://doi.org/10.1109/tcst.2004.840448
  35. Dopazo, E., Martínez-Céspedes, M. L. (2017). Rank aggregation methods dealing with ordinal uncertain preferences. Expert Systems with Applications, 78, 103–109. doi: https://doi.org/10.1016/j.eswa.2017.01.051
  36. Voschinin, A. P. (2002). Interval'niy analiz dannykh: razvitie i perspektivy. Zavodskaya Laboratoriya, 68 (1), 118–126.
  37. Orlov, A. I. (2013). Osnovnye idei statistiki interval'nykh dannykh. Nauchniy zhurnal KubGAU, 94, 55–70. Available at: https://cyberleninka.ru/article/n/osnovnye-idei-statistiki-intervalnyh-dannyh
  38. Alefel'd, G., Khertsberger, Yu. (1987). Vvedenie v interval'nye vychisleniya. Moscow: Mir, 360.
  39. Kalmykov, S. A., Shokin, Yu. I., Yuldashev, Z. Kh. (1986). Metody interval'nogo analiza. Novosibirsk: Nauka, 223. Available at: https://hi.b-ok.xyz/book/445084/5ae6b7
  40. Shokin, Yu. I. (1981). Interval'niy analiz. Novosibirsk: Nauka, 112. Available at: https://read.in.ua/book156021/
  41. Shariy, S. P. (2016). Konechnomerniy interval'niy analiz. Novosibirsk: XYZ, 606.
  42. Hansen, E. R. (1993). Computing zeros of functions using generalized interval arithmetic. Interval Computations, 3, 3–27. Available at: https://interval.louisiana.edu/reliable-computing-journal/1993/interval-computations-1993-3-pp-003-028.pdf
  43. Moore, R. E. (1979). Methods and Applications of Interval Analysis. Philadelphia: SIAM, 125. doi: https://doi.org/10.1137/1.9781611970906
  44. Kaucher, E. (1980). Interval analysis in the extended interval spase IR. Computing Suppl, 2, 33–49. Available at: http://www.math.bas.bg/~epopova/Kaucher-80-CS_33-49.pdf
  45. Bardachev, Yu. N., Kryuchkovskiy, V. V., Malomuzh, T. V. (2010). Metodologicheskaya predpochtitel'nost' interval'nykh ekspertnykh otsenok pri prinyatii resheniy v usloviyakh neopredelennosti. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriya: Matematychne modeliuvannia. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnia, 890, 18–28. Available at: http://mia.univer.kharkov.ua/13/30045.pdf
  46. Romanenkov, Y., Danova, M., Kashcheyeva, V., Bugaienko, O., Volk, M., Karminska-Bielobrova, M., Lobach, O. (2018). Complexification methods of interval forecast estimates in the problems on short­term prediction. Eastern-European Journal of Enterprise Technologies, 3 (3 (93)), 50–58. doi: https://doi.org/10.15587/1729-4061.2018.131939
  47. Podruzhko, A. A., Podruzhko, A. S., Kiritsev, P. N. (2009). Interval'nye metody resheniya zadach kalibrovki i klassifikatsii. Trudy Instituta sistemnogo analiza Rossiyskoy Akademii nauk. Dinamika neodnorodnykh sistem, 44, 173–186.
  48. Kochkarov, R. A. (2015). Interval'nye zadachi na predfraktal'nykh grafakh. Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh, 18, 255–264. Available at: https://cyberleninka.ru/article/n/intervalnye-zadachi-na-predfraktalnyh-grafah
  49. Marzullo, K. (1990). Tolerating failures of continuous-valued sensors. ACM Transactions on Computer Systems, 8 (4), 284–304. doi: https://doi.org/10.1145/128733.128735
  50. Muravyov, S. V., Khudonogova, L. I., Emelyanova, E. Y. (2018). Interval data fusion with preference aggregation. Measurement, 116, 621–630. doi: https://doi.org/10.1016/j.measurement.2017.08.045
  51. Khudonogova, L. I., Muravyov, S. V. (2021). Interval Data Fusion with Preference Aggregation for Balancing Measurement Accuracy and Energy Consumption in WSN. Wireless Personal Communications, 118 (4), 2399–2421. doi: https://doi.org/10.1007/s11277-021-08132-9
  52. Levin, V. I. (2004). Uporyadochenie intervalov i zadachi optimizatsii s interval'nymi parametrami. Kibernetika i sistemnyy analiz, 3, 14–24. Available at: http://ec.lib.vntu.edu.ua/DocDescription?doc_id=112446
  53. Levin, V. I. (2002). Intervals comparison and optimisation under the conditions of uncertainty. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 7 (3), 383–389. Available at: https://cyberleninka.ru/article/n/sravnenie-intervalov-i-optimizatsiya-v-usloviyah-neopredelennosti
  54. Romanenkov, Yu., Kosenko, V., Lobach, O., Grinchenko, E., Grinchenko, M. (2019). The Method for Ranking Quasi-Optimal Alternatives in Interval Game Models Against Nature. Proceedings of the 3rd International Conference on Computational Linguistics and Intelligent Systems (COLINS-2019). Available at: https://www.researchgate.net/publication/333488747_The_Method_for_Ranking_Quasi-Optimal_Alternatives_in_Interval_Game_Models_Against_Nature
Models of adaptive integration of weighted interval data in tasks of predictive expert assessment

Downloads

Published

2022-10-30

How to Cite

Ruban, I., Horenskyi, H., Romanenkov, Y., & Revenko, D. (2022). Models of adaptive integration of weighted interval data in tasks of predictive expert assessment . Eastern-European Journal of Enterprise Technologies, 5(4(119), 6–15. https://doi.org/10.15587/1729-4061.2022.265782

Issue

Section

Mathematics and Cybernetics - applied aspects