Розробка конструкції та технології виготовлення комбінованого волоконно-оптичного датчика для екстремальних умов експлуатації

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2022.266359

Ключові слова:

оптоволокно, датчик, формування, електроадгезія, з'єднання, травлення, стабільність, суміщення функцій

Анотація

Об'єктами дослідження є конструкції та технології виготовлення комбінованого волоконно-оптичного датчик, що використовується в екстремальних умовах експлуатації. Суть завдання полягає у дослідженні конструктивної та технологічної сумісності оптичних та мікромеханічних принципів одночасного вимірювання кількох різнорідних фізичних величин. У зв'язку з цим обраний модульний принцип перетворення вирішує проблему комбінованого перетворення. Розроблена конструкція та технологія електроадгезійного з'єднання дозволяють значно знизити внутрішні механічні напруги в датчику і тим самим підвищити стійкість комбінованих датчиків в екстремальних умовах експлуатації. Аналітичні моделі, що пов'язують величину та спрямованість внутрішніх механічних напруг з характеристиками тимчасової стійкості складних конструкцій, як правило, відсутні. На практиці отримані результати досліджень можуть бути застосовані до комбінованих датчиків тиску та температури, тиску та вібрації та ін.

Біографії авторів

Assem Kabdoldina, Al-Farabi Kazakh National University

PhD, Senior Lecturer

Department of Chemical Physics and Material Science

Zhomart Ualiyev, Satbayev University

PhD, Head of Department

Department of Higher Mathematics and Modeling

Nurzhigit Smailov, Satbayev University

PhD, Associate Professor

Department of Electronics, Telecommunications and Space Technologies

Feruza Malikova, Almaty Technological University

PhD, Head of Department

Department of Information Technology

Kuralay Oralkanova, CSI D. Kunayev Secondary School

Master of Mathematics, Teacher

Murat Baktybayev, Satbayev University

PhD, Associate Professor

Department of Robotics and Technical Means of Automation

Dinara Arinova, Auezov University

PhD, Senior Lecturer

Department of Mechanics and Engineering

Askar Khikmetov, International Information Technology University

PhD, Rector

Aktoty Shaikulova, Almaty Technological University

PhD, Senior Lecturer

Department of Information Technology

Lashin Bazarbay , Satbayev University

MS, Lecturer

Department of Robotics and Technical Means of Automation

Посилання

  1. Ghorat, M., Gharehpetian, G. B., Latifi, H., Hejazi, M. A., Bagheri, M. (2019). High-Resolution FBG-Based Fiber-Optic Sensor with Temperature Compensation for PD Monitoring. Sensors, 19 (23), 5285. doi: https://doi.org/10.3390/s19235285
  2. Mikhailov, P., Ualiyev, Z., Kabdoldina, A., Smailov, N., Khikmetov, A., Malikova, F. (2021). Multifunctional fiber-optic sensors for space infrastructure. Eastern-European Journal of Enterprise Technologies, 5 (5 (113)), 80–89. doi: https://doi.org/10.15587/1729-4061.2021.242995
  3. Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., Zhang, M., Yang, F., Wang, X. (2020). Recent Progress of Miniature MEMS Pressure Sensors. Micromachines, 11 (1), 56. doi: https://doi.org/10.3390/mi11010056
  4. Bai, L., Zheng, G., Sun, B., Zhang, X., Sheng, Q., Han, Y. (2021). High-precision optical fiber pressure sensor using frequency-modulated continuous-wave laser interference. AIP Advances, 11 (2), 025038. doi: https://doi.org/10.1063/5.0035643
  5. Korolev, V. A., Potapov, V. T. (2011). Volokonno-opticheskie datchiki temperatury i davleniia v biomeditcine. Vestnik novykh meditcinskikh tekhnologii tom. XVIII, 3, 256–258.
  6. Pevec, S., Donlagic, D. (2014). Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index. Optics Letters, 39 (21), 6221–6224. doi: https://doi.org/10.1364/ol.39.006221
  7. Mendoza, E. A., Esterkin, Y., Kempen, C., Sun, Z. (2011). Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator. Photonic Sensors, 1 (3), 281–288. doi: https://doi.org/10.1007/s13320-011-0021-8
  8. Zhou, N., Jia, P., Liu, J., Ren, Q., An, G., Liang, T., Xiong, J. (2020). MEMS-Based Reflective Intensity-Modulated Fiber-Optic Sensor for Pressure Measurements. Sensors, 20 (8), 2233. doi: https://doi.org/10.3390/s20082233
  9. Tcaplin, A. I., Repin, V. N. (2004). Pat. No. 2269755 RU. Volokonno-opticheskii datchik davleniia. MPK: G01L11/02. declareted: 07.07.2004; published: 10.02.2006.
  10. Stoesh, K. U., Boid, K. D. (2013). Pat. No. 2473874 RU. Raspredelennye opticheskie datchiki davleniia i temperatury. MPK: G01L11/02. declareted: 29.06.2009; published: 27.01.2013.
  11. Mikhailov, P., Ualiyev, Z. (2020). Sensor stability assurance problems and their relationship with the overall problems of providing system performance quality. MATEC Web of Conferences, 329, 03032. doi: https://doi.org/10.1051/matecconf/202032903032
  12. Timoshenkov, S. P., Boiko, A. N., Simonov, B. M. (2010) Metody sborki i montazha maketnykh obraztcov mikroelektromekhanicheskikh sistem. Izvestiia vuzov. Elektron, 84, 58–63.
  13. Ozhikenov, K., Mikhailov, P., Kabdoldina, A., Ualiyev, Zh. (2018). The forming processes of local removal of semiconductor materials in micromechanical devices manufacturing technologies International Journal of Mechanical Engineering and Technology, 9 (10), 1356–1367.
  14. Andreev, K. A., Vlasov, A. I., Shakhnov, V. A. (2014). Kremnievye preobrazovateli davleniia s zashchitoi ot peregruzki. Datchiki i sistemy, 10, 54–57.
  15. Sinev, L. S. (2014). Osobennosti ispolzovaniia elektrostaticheskikh soedinenii kremniia so steklom v tekhnologii mikrosistem. Inzhenernyi vestnik. MGTU im. N.E.Baumana, 5, 501–509.
  16. Khandan, O., Stark, D., Chang, Alexander., Rao, M. P. (2014). Wafer-scale titanium anodic bonding for microfluidic applications. Sensors and Actuators B: Chemical, 205, 244–248. doi: https://doi.org/10.1016/j.snb.2014.08.083
  17. Ushkov, A. V., Kozlov, A. N. (2007). Design, manufacture and research of silicon pressure sensing elements with built-in protection against overload. Nano- and microsystems. tech., 5, 49–51.
  18. Dragoi, V., Pabo, E., Burggraf, J., Mittendorfer, G. (2012). CMOS: compatible wafer bonding for MEMS and wafer-level 3D integration. Microsystem Technologies, 18 (7–8), 1065–1075. doi: https://doi.org/10.1007/s00542-012-1439-7
  19. Ran, Z., He, X., Rao, Y., Sun, D., Qin, X., Zeng, D. et al. (2021). Fiber-Optic Microstructure Sensors: A Review. Photonic Sensors, 11 (2), 227–261. doi: https://doi.org/10.1007/s13320-021-0632-7
  20. Mikhailov, P. G. (2021). Modeling the Influence of the Edge Electrostatic Effect on the Transformation Function of Thin-Film Quasi-Differential Capacitive Sensitive Elements. Journal of Physics: Conference Series, 2096 (1), 012143. doi: https://doi.org/10.1088/1742-6596/2096/1/012143
  21. Wang, Y. (2012). Fiber-Optic Sensors for Fully-Distributed Physical, Chemical and Biological Measurement. Blacksburg. Available at: https://vtechworks.lib.vt.edu/bitstream/handle/10919/19222/Wang_Y_D_2013.pdf?sequence=1
  22. Bachin, V. A. (1986). Diffuzionnaia svarka stekla i keramiki s metallami. Moscow: Mashinostroenie, 184.
  23. Ouyang, Y., Guo, H., Ouyang, X., Zhao, Y., Zheng, Z., Zhou, C., Zhou, A. (2017). An In-Fiber Dual Air-Cavity Fabry–Perot Interferometer for Simultaneous Measurement of Strain and Directional Bend. IEEE Sensors Journal, 17 (11), 3362–3366. doi: https://doi.org/10.1109/jsen.2017.2693501
  24. Pargfrieder, S. et al. (2004) New low temperature bonding technologies for the MEMS Industry. The 6th Korean MEMS Conf.
  25. Yufeng, J., Jiaxun, Z. (2005). MEMS Vacuum Packaging Technology and Applications. 2005 6th International Conference on Electronic Packaging Technology. doi: https://doi.org/10.1109/icept.2005.1564710
  26. Chernov, A. S., Samorodov, A. L., Khabarov, S. P., Gridchin, V. A. (2016). Fotochuvstvitelnyi element dlia sensora davleniia s opticheskoi prostranstvennoi moduliatciei. Nano- i mikrosistemnaia tekhnika, 18 (7), 416–423.
  27. Sinev, L. S., Riabov, V. T. (2011). Soglasovanie koeffitcientov termicheskogo rasshireniia pri elektrostaticheskom soedinenii kremniia so steklom. Mikro- i nanosistemnaia tekhnika, 5, 24–27.
Розробка конструкції та технології виготовлення комбінованого волоконно-оптичного датчика для екстремальних умов експлуатації

##submission.downloads##

Опубліковано

2022-10-30

Як цитувати

Kabdoldina, A., Ualiyev, Z., Smailov, N., Malikova, F., Oralkanova, K., Baktybayev, M., Arinova, D., Khikmetov, A., Shaikulova, A., & Bazarbay , L. (2022). Розробка конструкції та технології виготовлення комбінованого волоконно-оптичного датчика для екстремальних умов експлуатації . Eastern-European Journal of Enterprise Technologies, 5(5 (119), 34–43. https://doi.org/10.15587/1729-4061.2022.266359

Номер

Розділ

Прикладна фізика