Revealing the features of the third order phase spectrum of the main dangerous parameters of the gas medium

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.268437

Keywords:

coherence, third-order spectrum, parameter dynamics, gas medium, room, ignition

Abstract

The object of this study is the dynamics of hazardous parameters of the gas environment when materials are ignited in the premises. The task addressed was the early detection of fires in the premises. It is proposed to resolve this issue on the basis of using an assessment of the coherence of frequency components in the third-order spectrum relative to the dynamics of hazardous parameters of the gas environment. The results indicate the nonlinear nature of the dynamics of hazardous parameters of the gas environment both in the absence and in the presence of fires. It was established that the assessment of the coherence of the frequency components relative to the considered triplets in the third-order spectrum contains information on the ratio of order to chaos in the dynamics of hazardous parameters of the gas environment. This information can be used to reliably detect fires. It was found that when the test materials in the form of alcohol, paper, wood, and textiles are ignited, the ratio of order to chaos in the temperature and CO dynamics in a gaseous medium is halved. It was established that the average values for frequency indices from 0 to 20 of the coherence of the frequency components of the dynamics of hazardous parameters on the ignition interval of test materials are in the range from +0.005 to –0.187. At the same time, in the interval of absence of ignition of test materials, the average values of the coherence assessment for frequency indices from 0 to 20 are in the range from +0.48 to +0.022. The reported results generally indicate the prospects and further development of studies into the coherence of the frequency components of the third-order spectrum for the dynamics of hazardous parameters of the gas environment in order to detect fires in the premises

Author Biographies

Boris Pospelov, Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Oleksandr Yashchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization in the Field of Civil Protection

Batyr Khalmuradov, National Aviation University

PhD, Professor

Department of Civil and Industrial Safety

Olena Petukhova, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire Prevention in Settlements

Stella Gornostal, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Applied Mechanics and Environmental Protection Technologies

Yurii Kozar, Bogdan Khmelnitsky Melitopol State Pedagogical University

Доктор юридичних наук

Кафедра права

Kateryna Tishechkina, Mykolayiv National Agrarian University

PhD, Associate Professor

Research Center

Olga Salamatina, Mykolayiv National Agrarian University

PhD, Associate Professor

Research Center

Zhanna Ihnatenko, Mykolayiv National Agrarian University

Research Center

References

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
  2. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  3. Popov, O., Іatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2018). Conceptual Approaches for Development of Informational and Analytical Expert System for Assessing the NPP impact on the Environment. Nuclear and Radiation Safety, 3 (79), 56–65. doi: https://doi.org/10.32918/nrs.2018.3(79).09
  4. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
  5. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  6. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/nrs.2019.4(84).11
  7. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830
  8. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865
  9. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
  10. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654
  11. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  12. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  13. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 63–73. doi: https://doi.org/10.15587/1729-4061.2017.102314
  14. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.
  15. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.179
  16. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  17. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
  18. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  19. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  20. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
  21. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
  22. BS EN 54-30:2015. Fire detection and fire alarm systems Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors.
  23. BS EN 54-31:2014. Fire detection and fire alarm system - Part 31: Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors.
  24. ISO 7240-8:2014. Fire detection and alarm systems – Part 8: Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor.
  25. Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE Sensors Journal, 5 (5), 1050–1056. doi: https://doi.org/10.1109/jsen.2005.845207
  26. Chen, S.-J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety Journal, 42 (8), 507–515. doi: https://doi.org/10.1016/j.firesaf.2007.01.006
  27. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Brahim-Belhouari, S. (2008). A Committee Machine Gas Identification System Based on Dynamically Reconfigurable FPGA. IEEE Sensors Journal, 8 (4), 403–414. doi: https://doi.org/10.1109/jsen.2008.917124
  28. Skinner, A. J., Lambert, M. F. (2006). Using Smart Sensor Strings for Continuous Monitoring of Temperature Stratification in Large Water Bodies. IEEE Sensors Journal, 6 (6), 1473–1481. doi: https://doi.org/10.1109/jsen.2006.881373
  29. Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A Single-Chip CMOS Smoke and Temperature Sensor for an Intelligent Fire Detector. IEEE Sensors Journal, 9 (8), 914–921. doi: https://doi.org/10.1109/jsen.2009.2024703
  30. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131.
  31. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
  32. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  33. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  34. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  35. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  36. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  37. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  38. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  39. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  40. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  41. Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevska, O., Butenko, T. et al. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 4 (10 (118)), 60–66. doi: https://doi.org/10.15587/1729-4061.2022.263194
  42. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Volume 3: Validation. National Institute of Standards and Technology. Available at: https://www.fse-italia.eu/PDF/ManualiFDS/FDS_Validation_Guide.pdf
  43. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. Volume 1. National Institute of Standard and Technology.
  44. Polstiankin, R. M. (2016). Mathematical model of quality detection ignition point heat detection. Problemy pozharnoy bezopasnosti, 39, 201–207. Available at: http://nbuv.gov.ua/UJRN/Ppb_2016_39_34
  45. Heskestad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. doi: https://doi.org/10.1016/0379-7112(92)90024-7
  46. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et al. (2002). Prototype Early Warning Fire Detection System: Test Series 4 Results. NRL/MR/6180-02-8602, Naval Research Laboratory. Available at: https://apps.dtic.mil/sti/pdfs/ADA399480.pdf
  47. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. doi: https://doi.org/10.15587/1729-4061.2022.265781
  48. Saeed, M., Alfatih, S. (2013). Nonlinearity detection in hydraulic machines utilizing bispectral analysis. TJ Mechanical engineering and machinery, 13–21. Available at: http://eprints.utm.my/id/eprint/42178/
  49. Yang, K., Zhang, R., Chen, S., Zhang, F., Yang, J., Zhang, X. (2015). Series Arc Fault Detection Algorithm Based on Autoregressive Bispectrum Analysis. Algorithms, 8 (4), 929–950. doi: https://doi.org/10.3390/a8040929
  50. Yang, B., Wang, M., Zan, T., Gao, X., Gao, P. (2021). Application of Bispectrum Diagonal Slice Feature Analysis in Tool Wear States Monitoring. Posted Content. doi: https://doi.org/10.21203/rs.3.rs-775113/v1
  51. Cui, L., Xu, H., Ge, J., Cao, M., Xu, Y., Xu, W., Sumarac, D. (2021). Use of Bispectrum Analysis to Inspect the Non-Linear Dynamic Characteristics of Beam-Type Structures Containing a Breathing Crack. Sensors, 21 (4), 1177. doi: https://doi.org/10.3390/s21041177
  52. Max, J. (1981). Principes generaus et methods classiques. Vol. 1. Paris, 311.
  53. Mohankumar, K. (2015). Implementation of an underwater target classifier using higher order spectral features. Cochin. Available at: https://dyuthi.cusat.ac.in/xmlui/bitstream/handle/purl/5368/T-2396.pdf?sequence=1
  54. Nikias, C. L., Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75 (7), 869–891. doi: https://doi.org/10.1109/proc.1987.13824
Revealing the features of the third order phase spectrum of the main dangerous parameters of the gas medium

Downloads

Published

2022-12-30

How to Cite

Pospelov, B., Bezuhla, Y., Yashchenko, O., Khalmuradov, B., Petukhova, O., Gornostal, S., Kozar, Y., Tishechkina, K., Salamatina, O., & Ihnatenko, Z. (2022). Revealing the features of the third order phase spectrum of the main dangerous parameters of the gas medium. Eastern-European Journal of Enterprise Technologies, 6(10 (120), 63–70. https://doi.org/10.15587/1729-4061.2022.268437