Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.268618

Keywords:

enclosing structure, accumulation of solar energy, heat accumulating material, modeling of thermal processes, phase transition

Abstract

This paper proposes a mathematical model and a procedure for calculating the thermal state of the enclosing structure of the building, which includes an energy-active panel that accumulates solar radiation due to the phase transition of the heat-accumulating material. The mathematical model is based on a two-dimensional non-stationary nonlinear equation of thermal conductivity, which describes the process of heat transfer in the bearing layer of the enclosing structure and the energy-active panel. The model also includes equations describing radiant heat transfer between opaque and translucent bodies. To correctly describe solar insolation, the ASHRAE 2009 model was used in conjunction with the daily change in the position of the Sun in the sky.

To solve the system of equations that make up the mathematical model, an iterative procedure has been developed, which involves alternating solution at each time step of the two-dimensional equation of thermal conductivity and a set of algebraic equations of convective and radiant heat transfer.

The study’s result established that the amount of accumulated energy in the heat-accumulating material of the phase transition during daylight hours increases significantly, from 15 to 35 %. At night, the surface temperature of the heat-accumulating element in structures using a material with a phase transition is greater than in the case of heat accumulation only in the bearing layer. As a result, it is possible to select from 70 to 120 % more accumulated heat while the presence of high-thermal partitions in a heat-accumulating material with a phase transition contributes to an increase in accumulated heat and usable heat

Author Biographies

Ruslan Kudabayev, Mukhtar Auezov South Kazakhstan University

Doctoral Student

Department of Construction and Construction Materials

Nursultan Mizamov, South-Kazakhstan Mukhtar Auezov South Kazakhstan University

Doctoral Student

Department of Architecture

Nurlan Zhangabay, Shymkent University

PhD, Associate Professor

Department of Construction

Ulanbator Suleimenov, Shymkent University

Doctor of Technical Sciences, Professor

Department of Construction

Andrii Kostikov, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Doctor of Technical Sciences, Professor, Corresponding Member of the National Academy of Sciences of Ukraine

Department of Modeling and Identification of Thermal Processes in Energy Technology Equipment

Anna Vorontsova, A. Pidhornyi Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Leading Engineer

Department of Modeling and Identification of Thermal Processes in Energy Technology Equipment

Svetlana Buganova, International Educational Corporation (KazGASA)

PhD, Associate Professor

Faculty of Building Technologies, Infrastructure and Management

Altynsary Umbitaliyev, Shymkent University

Doctor in Economics, Professor

Department of Economics

Elmira Kalshabekovа, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department og Construction and Construction Materials

Zhumadilla Aldiyarov, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Construction and Construction Materials

References

  1. Pacheco, R., Ordóñez, J., Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16 (6), 3559–3573. doi: https://doi.org/10.1016/j.rser.2012.03.045
  2. Zhangabay, N., Abshenov, K., Bakhbergen, S., Zhakash, A., Moldagaliyev, A. (2022). Evaluating the Effectiveness of Energy-Saving Retrofit Strategies for Residential Buildings. International Review of Civil Engineering (IRECE), 13 (2), 118. doi: https://doi.org/10.15866/irece.v13i2.20933
  3. Du, K., Calautit, J., Wang, Z., Wu, Y., Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy, 220, 242–273. doi: https://doi.org/10.1016/j.apenergy.2018.03.005
  4. Shi, X., Tian, Z., Chen, W., Si, B., Jin, X. (2016). A review on building energy efficient design optimization rom the perspective of architects. Renewable and Sustainable Energy Reviews, 65, 872–884. doi: https://doi.org/10.1016/j.rser.2016.07.050
  5. Martín, M., Villalba, A., Inés Fernández, A., Barreneche, C. (2019). Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: Lab-scale characterization. Energy and Buildings, 192, 75–83. doi: https://doi.org/10.1016/j.enbuild.2019.03.029
  6. Kudabayev, R., Suleimenov, U., Ristavletov, R., Kasimov, I., Kambarov, M., Zhangabay, N., Abshenov, K. (2022). Modeling the Thermal Regime of a Room in a Building with a Thermal Energy Storage Envelope. Mathematical Modelling of Engineering Problems, 9 (2), 351–358. doi: https://doi.org/10.18280/mmep.090208
  7. Ren, M., Wen, X., Gao, X., Liu, Y. (2021). Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Construction and Building Materials, 273, 121714. doi: https://doi.org/10.1016/j.conbuildmat.2020.121714
  8. Elias, C. N., Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394. doi: https://doi.org/10.1016/j.egypro.2019.02.101
  9. Geetha, N. B., Velraj, R. (2012). Passive cooling methods for energy efficient buildings with and without thermal energy storage - A review. Energy Education Science and Technology Part A: Energy Science and Research, 29 (2), 913–946.
  10. Buonomo, B., Capasso, L., Diana, A., Manca, O., Nardini, S. (2019). A numerical analysis on a solar chimney with an integrated latent heat thermal energy storage. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5138762
  11. Feng, P. H., Zhao, B. C., Wang, R. Z. (2020). Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering, 166, 114728. doi: https://doi.org/10.1016/j.applthermaleng.2019.114728
  12. Cuce, E., Cuce, P. M. (2016). Solar Pond Window Technology for Energy-Efficient Retrofitting of Buildings: An Experimental and Numerical Investigation. Arabian Journal for Science and Engineering, 42 (5), 1909–1916. doi: https://doi.org/10.1007/s13369-016-2375-0
  13. Irshad, K., Habib, K., Saidur, R., Kareem, M. W., Saha, B. B. (2019). Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review. Journal of Cleaner Production, 209, 1376–1395. doi: https://doi.org/10.1016/j.jclepro.2018.09.245
  14. Shen, J., Zhang, X., Yang, T., Tang, L., Shinohara, H., Wu, Y. et al. (2016). Experimental Study of a Compact Unglazed Solar Thermal Facade (STF) for Energy-efficient Buildings. Energy Procedia, 104, 3–8. doi: https://doi.org/10.1016/j.egypro.2016.12.002
  15. Zhu, L., Yang, Y., Chen, S., Sun, Y. (2018). Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Applied Thermal Engineering, 138, 35–47. doi: https://doi.org/10.1016/j.applthermaleng.2018.03.103
  16. Borodulin, V. Y., Nizovtsev, M. I. (2018). Heat-inertial properties of walls of lightweight thermal insulation with phase change materials. Journal of Physics: Conference Series, 1105, 012108. doi: https://doi.org/10.1088/1742-6596/1105/1/012108
  17. Vede, P., Kiselkin, E. (2018). Thermal Energy Storage in the Envelope of Buildings. Epoha nauki, 14, 165–173. Available at: http://eraofscience.com/EofS/Vypyski2018/14-iyun_2018/40.pdf
  18. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. N. M., Moldagaliyev, A., Abshenov, K. et al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
  19. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. et al. (2022). Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.254218
  20. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A., Dosmakanbetova, A., Abshenov, K. et al. (2022). Estimation of the strength of vertical cylindrical liquid storage tanks with dents in the wall. Eastern-European Journal of Enterprise Technologies, 1 (7 (115)), 6–20. doi: https://doi.org/10.15587/1729-4061.2022.252599
  21. Suleimenov, U., Zhangabay, N., Abshenov, K., Utelbayeva, A., Imanaliyev, K., Mussayeva, S. et al. (2022). Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections. Eastern-European Journal of Enterprise Technologies, 3 (7 (117)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.258118
  22. Zhangabay, N., Sapargaliyeva, B., Utelbayeva, A., Kolesnikov, A., Aldiyarov, Z., Dossybekov, S. et al. (2022). Experimental Analysis of the Stress State of a Prestressed Cylindrical Shell with Various Structural Parameters. Materials, 15 (14), 4996. doi: https://doi.org/10.3390/ma15144996
  23. Zhangabay, N., Sapargaliyeva, B., Suleimenov, U., Abshenov, K., Utelbayeva, A., Kolesnikov, A. et al. (2022). Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials, 15 (16), 5732. doi: https://doi.org/10.3390/ma15165732
  24. Zhangabay, N., Suleimenov, U., Utelbayeva, A., Kolesnikov, A., Baibolov, K., Imanaliyev, K. et al. (2022). Analysis of a Stress-Strain State of a Cylindrical Tank Wall Vertical Field Joint Zone. Buildings, 12 (9), 1445. doi: https://doi.org/10.3390/buildings12091445
  25. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. (2022). Influence of the parameters of the pre-stressed winding on the oscillations of vertical cylindrical steel oil tanks. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.265107
  26. Pintaldi, S., Sethuvenkatraman, S., White, S., Rosengarten, G. (2017). Energetic evaluation of thermal energy storage options for high efficiency solar cooling systems. Applied Energy, 188, 160–177. doi: https://doi.org/10.1016/j.apenergy.2016.11.123
  27. Ndiaye, K., Ginestet, S., Cyr, M. (2018). Thermal energy storage based on cementitious materials: A review. AIMS Energy, 6 (1), 97–120. doi: https://doi.org/10.3934/energy.2018.1.97
  28. Horn, R., Burr, M., Fröhlich, D., Gschwander, S., Held, M., Lindner, J. P., Munz, G. et al. (2018). Life Cycle Assessment of Innovative Materials for Thermal Energy Storage in Buildings. Procedia CIRP, 69, 206–211. doi: https://doi.org/10.1016/j.procir.2017.11.095
  29. Frazzica, A., Freni, A. (2017). Adsorbent working pairs for solar thermal energy storage in buildings. Renewable Energy, 110, 87–94. doi: https://doi.org/10.1016/j.renene.2016.09.047
  30. Koukou, M. K., Vrachopoulos, M. Gr., Tachos, N. S., Dogkas, G., Lymperis, K., Stathopoulos, V. (2018). Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials. Thermal Science and Engineering Progress, 7, 87–98. doi: https://doi.org/10.1016/j.tsep.2018.05.004
  31. Jeon, J., Park, J. H., Wi, S., Yang, S., Ok, Y. S., Kim, S. (2019). Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials. Environmental Research, 172, 637–648. doi: https://doi.org/10.1016/j.envres.2019.01.058
  32. Utelbaeva, A. B., Ermakhanov, M. N., Zhanabai, N. Zh., Utelbaev, B. T., Mel’deshov, A. A. (2013). Hydrogenation of benzene in the presence of ruthenium on a modified montmorillonite support. Russian Journal of Physical Chemistry A, 87 (9), 1478–1481. doi: https://doi.org/10.1134/s0036024413090276
  33. Borodin, K., Zhangabayuly Zhangabay, N. (2019). Mechanical characteristics, as well as physical-and-chemical properties of the slag-filled concretes, and investigation of the predictive power of the metaheuristic approach. Curved and Layered Structures, 6 (1), 236–244. doi: https://doi.org/10.1515/cls-2019-0020
  34. Qiu, F., Song, S., Li, D., Liu, Y., Wang, Y., Dong, L. (2020). Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash. Journal of Cleaner Production, 246, 118952. doi: https://doi.org/10.1016/j.jclepro.2019.118952
  35. Sarsenbaev, A. A. et al. (2019). Pat. No. 4426 RK. Konstrukciya ograzhdeniya s energoaktivnoy panel'yu. No. 2019/0614.2; declareted: 02.07.2019; published: 08.11.2019. Available at: https://gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=315556
  36. Shandilya, A., Hauer, M., Streicher, W. (2020). Optimization of Thermal Behavior and Energy Efficiency of a Residential House Using Energy Retrofitting in Different Climates. Civil Engineering and Architecture, 8 (3), 335–349. doi: https://doi.org/10.13189/cea.2020.080318
  37. Saparov, S. A. et al. (2019). Pat. No. 34970 RK. Teploakkumuliruyushchiy material. No. 2019/0897.1; declareted: 10.12.2019; published: 11.06.2021. Available at: https://gosreestr.kazpatent.kz/Invention/Details?docNumber=321931
  38. Ikutegbe, C. A., Farid, M. M. (2020). Application of phase change material foam composites in the built environment: A critical review. Renewable and Sustainable Energy Reviews, 131, 110008. doi: https://doi.org/10.1016/j.rser.2020.110008
  39. Duissenbekov, B., Tokmuratov, A., Zhangabay, N., Orazbayev, Z., Yerimbetov, B., Aldiyarov, Z. (2020). Finite-difference equations of quasistatic motion of the shallow concrete shells in nonlinear setting. Curved and Layered Structures, 7 (1), 48–55. doi: https://doi.org/10.1515/cls-2020-0005
  40. Yao, C., Kong, X., Li, Y., Du, Y., Qi, C. (2018). Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building. Energy Conversion and Management, 155, 20–31. doi: https://doi.org/10.1016/j.enconman.2017.10.052
  41. James, C., Yuen-Yick, K. (2009). A brief review of several numerical methods for one-dimensional Stefan problems. Thermal Science, 13 (2), 61–72. doi: https://doi.org/10.2298/tsci0902061c
  42. Samarskij, A. A., Vabishchevich, P. N. (2003). Vychislitel'naya teploperedacha. Moscow: Editorial URSS, 784. Available at: http://samarskii.ru/books/book2003.pdf
  43. ASHRAE Handbook - Fundamentals (SI Edition). Available at: https://www.pdfdrive.com/2009-ashrae-handbook-fundamentals-si-edition-e169690158.html
  44. Kutateladze, S. S. (1990). Teploperedacha i gidrodinamicheskoe soprotivlenie. Moscow: Energoatomizdat, 367.
  45. Aymbetova, I. O., Suleymenov, U. S., Kambarov, M. A., Kalshаbekova, E. N., Ristavletov, R. A. (2018). Thermophysical properties of phase transparent heat-storing materials used in construction. Advances in Current Natural Sciences, 1 (12), 9–13. doi: https://doi.org/10.17513/use.36966
Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation

Downloads

Published

2022-12-30

How to Cite

Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S., Umbitaliyev, A., Kalshabekovа E., & Aldiyarov, Z. (2022). Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies, 6(8 (120), 26–37. https://doi.org/10.15587/1729-4061.2022.268618

Issue

Section

Energy-saving technologies and equipment