Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.268621

Keywords:

uncertainty, monitoring object, data noise, assessment efficiency, reliability of decisions

Abstract

The problem that is solved in the research is to increase the efficiency of assessing the state of the monitoring object while ensuring the given reliability, regardless of the hierarchy of the monitoring object. The object of research is decision support systems. The subject of the research is the process of evaluating the monitoring object using bio-inspired algorithms. The hypothesis of the research is the need to increase the efficiency of the assessment of the state of the monitoring object with the given reliability. In the course of the research, an improved method of increasing the efficiency of decision-making based on bio-inspired algorithms was proposed. General provisions of artificial intelligence theory were used to solve the problem of analyzing the object state in intelligent decision support systems.

The essence of improvement is to use the following procedures:

− taking into account the type of uncertainty about the state of the monitoring object (full uncertainty, partial uncertainty and full awareness);

− taking into account the degree of noise in the data on the state of the monitoring object. Noise refers to the degree of information distortion created by the enemy’s means of electronic and cyber warfare;

− using the ant colony optimization algorithm and the genetic algorithm to find the path metric while assessing the state of the monitoring object;

− deep learning of synthesized ants using evolving artificial neural networks.

An example of using the proposed method in assessing the state of the operational situation of a group of troops (forces) is presented. The specified example showed a 15−22 % increase in the efficiency of data processing using additional improved procedures

Author Biographies

Mykhailo Koval, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

Doctor of Military Sciences, Head

Oleg Sova, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Sciences, Senior Researcher, Head of Department

Department of Automated Control Systems

Andrii Shyshatskyi, Research Center for Trophy and Perspective Weapons and Military Equipment

PhD, Senior Researcher, Head of Department

Department of Robotic Systems Research

Yurii Artabaiev, Research Center for Trophy and Perspective Weapons and Military Equipment

PhD, Head of Department

Research Department of Combat Crews

Nataliia Garashchuk, Scientific-Research Institute of Military Intelligence

Head of Center

Scientific and Methodical Center

Yurii Yivzhenko, State Scientific Institution “Institute of Education Content Modernization”

PhD, Head of Sector

Sector of Scientific and Educational and Methodological Support for the Training of Professional Junior Bachelors in the System of Professional Pre-Higher Education of the Division of Scientific and Methodological Support of Vocational Education

Yuriy Luscshay, National Transport University

PhD, Associate Professor

Department of Transport Law and Logistics

Liudmyla Dovhopoliuk, National Transport University

PhD, Associate Professor

Department of Road Design, Geodesy and Land Management

Oles Haidenko, Kyiv Electromechanical Professional Pre-Higher College

PhD, Lecturer

Mykola Dorofeev, Military Unit A3444

PhD, Leading Researcher, Leading Test Engineer

Scientific and Research Department of Tests of Missile and Artillery Weapons

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1 (5), 35–40. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10, 33–47. doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemniy analiz, upravlenie i obrabotka informatsii, 13, 31‒35.
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  20. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  21. Gorelova, G. V. (2013). Kognitivnyj podhod k imitacionnomu modelirovaniyu slozhnyh sistem. Izvestiya YuFU. Tekhnicheskie nauki, 3, 239–250.
  22. Emel'yanov, V. V., Kurejchik, V. V., Kurejchik, V. M., Emel'yanov, V. V. (2003). Teoriya i praktika evolyucionnogo modelirovaniya. Moscow: Fizmatlit, 432.
  23. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  24. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  25. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  26. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  27. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16
  28. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292
  29. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  30. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. doi: https://doi.org/10.15587/1729-4061.2018.126578
  31. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. doi: https://doi.org/10.15587/1729-4061.2017.96321
  32. Lovska, A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_1/10%20Lovska.pdf
  33. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  34. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  35. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: https://doi.org/10.14311/ap.2020.60.0478
  36. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. doi: https://doi.org/10.15587/1729-4061.2022.266009
Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms

Downloads

Published

2022-12-30

How to Cite

Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y., Luscshay, Y., Dovhopoliuk, L., Haidenko, O., & Dorofeev, M. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms . Eastern-European Journal of Enterprise Technologies, 6(4 (120), 6–13. https://doi.org/10.15587/1729-4061.2022.268621

Issue

Section

Mathematics and Cybernetics - applied aspects