# Improving the quality of cupcakes by optimizing the recipe using a mathematical modeling method

## Authors

• Alina Tkachenko Poltava University of Economics and Trade, Ukraine
• Olena Olkhovska Poltava University of Economics and Trade, Ukraine
• Oksana Chernenko Poltava University of Economics and Trade, Ukraine
• Tatyana Chilikina Poltava University of Economics and Trade, Ukraine
• Yulia Basova Poltava State Agrarian University, Ukraine

## Keywords:

muffins from organic raw materials, mathematical modeling, simplex methods, qualimetric evaluation

## Abstract

In order to model the process of developing new recipes for muffins from organic raw materials, a mathematical model of the problem has been built. The solution involved using a Microsoft Excel spreadsheet processor and a computer algebra system from the class of automated design systems Mathcad. The object of research is the cupcake "Grechanyk", and the control sample is the cupcake "Stolichny". The following components are proposed to be introduced into the cupcake: buckwheat flour, agave syrup, cane sugar, sesame oil, butter, dried raisins. All raw materials are organic. With the help of modeling the content of food nutrients – amino acids, fatty acids, carbohydrates, and the price of raw materials, a rational formulation of the product has been developed. In the developed cupcake, a comprehensive quality indicator is investigated by qualimetric evaluation. Group quality indicators included organoleptic, physical-chemical, and microbiological indicators. They also include the content of toxic elements, nutritional and energy value. The weighting coefficients of group quality indicators are: 0.15 for organoleptic, physical-chemical, microbiological indicators. The coefficient of weight of the energy value is 0.10; food – 0.20, toxicological elements – 0.25.

The results of the study showed that the integrated quality indicator is 0.82. These correspond to an excellent level of quality. The values of group quality indicators are as follows: organoleptic indicators – 0.14; physical and chemical indicators – 0.11. The content of toxicological elements is 0.22. Microbiological indicators – 0.14. The nutritional value is 0.13. Energy value – 0.09.

The results indicate the relevance of the use of the mathematical apparatus of design. The research results can be used by food industry enterprises to expand the range of products and to optimize the production process in the presence of the specified amount of raw materials.

## Author Biographies

### Alina Tkachenko, Poltava University of Economics and Trade

PhD, Associate Professor

Department of Commodity Research, Biotechnology, Examination and Customs

### Olena Olkhovska, Poltava University of Economics and Trade

PhD

Department of Computer Sciences and Information Technologies

### Oksana Chernenko, Poltava University of Economics and Trade

PhD, Associate Professor

Department of Computer Sciences and Information Technologies

### Tatyana Chilikina, Poltava University of Economics and Trade

PhD, Associate Professor

Department of Computer Sciences and Information Technologies

### Yulia Basova, Poltava State Agrarian University

PhD, Associate Professor

Department of Mechanical and Electrical Engineering

## References

1. Ferrer, J., Prats, C., López, D., Vives-Rego, J. (2009). Mathematical modelling methodologies in predictive food microbiology: A SWOT analysis. International Journal of Food Microbiology, 134 (1-2), 2–8. doi: https://doi.org/10.1016/j.ijfoodmicro.2009.01.016
2. Le Feunteun, S., Verkempinck, S., Floury, J., Janssen, A., Kondjoyan, A., Marze, S. et al. (2021). Mathematical modelling of food hydrolysis during in vitro digestion: From single nutrient to complex foods in static and dynamic conditions. Trends in Food Science & Technology, 116, 870–883. https://doi.org/10.1016/j.tifs.2021.08.030
3. Shahari, N. A. (2012). Mathematical modelling of drying food products: application to tropical fruits. University of Nottingham. Available at: http://eprints.nottingham.ac.uk/12485/
4. Breus, N. M., Hrybkov, S. V., Polischuk, G. Ye., Siedykh, O. L. (2019). Development of Mathematical Apparatus of the Expert System for Modelling Ice Cream Recipes with Specified Quality Parameters. Nauka Ta Innovacii, 15 (5), 62–72. doi: https://doi.org/10.15407/scin15.05.062
5. Piringer, O. (2007). Mathematical modelling of chemical migration from food contact materials. Chemical Migration and Food Contact Materials, 180–202. doi: https://doi.org/10.1533/9781845692094.2.180
6. Chorna, T., Shubina, L., Yanushkevych, D., Domanova, O. (2020). Qualimetric Model of Assessment of Quality and Security of Goods. Path of Science, 6 (4), 2001–2006. doi: https://doi.org/10.22178/pos.57-6
7. Britanova, T., Antypenko, L. (2022). Price of pulse oximeters bought by the students of Pharmacy Faculty. Conference: 7th International scientific and practical conference. "Science, innovations and education: problems and prospects". Tokyo. Available at: https://www.researchgate.net/publication/358781986_Price_of_pulse_oximeters_bought_by_the_students_of_Pharmacy_Faculty/link/621500daba15e05e2ea06ecb/download
8. Nekrasov, P. O. (2010). Rozrobka retseptur marharyniv funktsionalnoho pryznachennia metodom matematychnoho modeliuvannia. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI», 30, 205–214. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/21738/1/vestnik_KhPI_2010_30_Nekrasov_Rozrobka.pdf
9. Bongers, P., Almeida-Rivera, C. (2011). Dynamic modelling of the margarine production process. 21st European Symposium on Computer Aided Process Engineering, 1301–1305. doi: https://doi.org/10.1016/b978-0-444-54298-4.50039-8
10. Belinska, S., Orlova, N., Krasnoshchok, V. (2008). Modeliuvannia retseptur bahatokomponentnykh ovochevykh napivfabrykativ. Tovary i rynky, 1, 84–91. Available at: http://nbuv.gov.ua/UJRN/tovary_2008_1_15
11. Sorokina, S. V., Zhyliuk, N. O. Yatsutsenko, O. O. (2009). Matematychne modeliuvannia retsepturnoho skladu syrnykh vyrobiv. Vistyk Nats. tekhn. un-tu «KhPI»: zb. nauk. prats. Temat. Vyp.: Khimiya khimichna tekhnolohiya i ekolohiya, 22, 132–138. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/30715/1/vestnik_KhPI_2009_22_Sorokina_Matematychne_modelyuvannya.pdf
12. Penkina, N. M., Tatar, L. V., Karbivnycha, Т. V. (2015). Modelling the prescription of semi-finished products in soft drinks. Visnyk KhNTU, 4 (55), 153–158. Available at: http://kntu.net.ua/ukr/content/download/82003/475439/file/%D0%92%D0%86%D0%A1%D0%9D%D0%98%D0%9A%20%E2%84%96%204%20(55)%202015.pdf
13. Nwabueze, T. U. (2010). Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. International Journal of Food Science & Technology, 45 (9), 1768–1776. doi: https://doi.org/10.1111/j.1365-2621.2010.02256.x
14. Minorova, A., Krushelnytska, N., Rudakova, T., Moiseeva, L., Narizhnyi, S. (2020). Quality evaluation of milk multicomponent mixtures on the principles of qualimetry. Food Resources, 8 (15), 139–150. Available at: https://iprjournal.kyiv.ua/index.php/pr/article/view/332
15. Tkachenko, A., Syrokhman, I., Guba, L., Basova, Y., Goryachova, E. (2021). Research of quality and safety indicators of organic raw materials for development of new cookie recipes. EUREKA: Life Sciences, 3, 36–40. doi: https://doi.org/10.21303/2504-5695.2021.001882
17. Shidakova-Kamenyuka, E., Golovko, N., Rogovyi, І., Rogovaya, A. (2015). The use of qualimetry principles for the evaluation of the quality of biscuits with the addition of semi-finished nutritive bone product. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1, 213–222. Available at: http://nbuv.gov.ua/UJRN/Pt_2015_1_25
18. Tkachenko, A., Birta, G., Burgu, Y., Floka, L., Kalashnik, O. (2018). Substantiation of the development of formulations for organic cupcakes with an elevated protein content. Eastern-European Journal of Enterprise Technologies, 3 (11 (93)), 51–58. doi: https://doi.org/10.15587/1729-4061.2018.133705
19. DSTU 4910:2008. Confectionery products. Methods of determination of moisture and dried matter content. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=95233
20. DSTU 4672:2006. Confectionery production. Methods for determination of ash and metallomagnetic admixture content. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=92590
21. DSTU 5060:2008. Confectionary. Methods for determination of fat content. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=84520
22. Fursik, О., Strashynskiу, I., Pasichniy, V. (2016). Definitions amino acid composition and microbiological indicators of cooked sausages. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 18 (2), 115–120. doi: http://dx.doi.org/10.15421/nvlvet6823
23. Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation (2013). Rome, 66. Available at: http://www.fao.org/3/a-i3124e.pdf
24. Arsenieva, L. Yu. (2007). Naukove obgruntuvannia ta rozroblennia tekhnolohiyi funktsionalnykh khlibobulochnykh vyrobiv z roslynnymy bilkamy ta mikronutrientamy. Kyiv, 42.
25. Lastukhin, Yu. O. (2005). Khimiya pryrodnykh orhanichnykh spoluk. Lviv: Lvivska politekhnika, 560.
26. DSTU ISO 4833:2006. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of microorganisms. Colony-count technique at 30 °С (ISO 4833:2003, IDT). Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=95734
27. Suneeta Chandorkar, S. C. (2013). Analysis of Metal Content of Organic Foods. IOSR Journal of Environmental Science, Toxicology and Food Technology, 4 (3), 44–49. doi: https://doi.org/10.9790/2402-0434449
28. Dubinina, A. A., Maliuk, L. P., Seliutina, H. A. (2007). Toksychni rechovyny u kharchovykh produktakh ta metody yikh vyznachennia. Kyiv: Profesional, 384.
29. Hassan, N., Pazil, A. H. M., Idris, N. S., Razman, N. F. (2013). A Goal Programming Model for Bakery Production. Advances in Environmental Biology, 7 (1), 187–190. Available at: https://www.researchgate.net/publication/235923670_A_goal_programming_model_for_bakery_production
30. Akpan, N. P., Iwok, I. A. (2016). Application of Linear Programming for Optimal Use of Raw Materials in Bakery. International Journal of Mathematics and Statistics Invention (IJMSI), 4 (8), 51–57. Available at: https://https://www.ijmsi.org/Papers/Volume.4.Issue.8/J040805157.pdf

2022-12-30

## How to Cite

Tkachenko, A., Olkhovska, O., Chernenko, O., Chilikina, T., & Basova, Y. (2022). Improving the quality of cupcakes by optimizing the recipe using a mathematical modeling method. Eastern-European Journal of Enterprise Technologies, 6(11 (120), 99–108. https://doi.org/10.15587/1729-4061.2022.268973

## Section

Technology and Equipment of Food Production