Identifying features in the structural and phase composition of the products of recycling of the scale of high-speed cutting steel by carbon thermal reduction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.269507

Keywords:

oxide man-made waste, scale of high-speed steels, carbon-thermal reduction, structural-phase transformations

Abstract

This paper reports a study into the features of the structural-phase composition of products from the carbon-thermal reduction of scale of high-speed steels that yields an alloying additive. This is necessary to determine the technological parameters that reduce the loss of target elements in the process of obtaining and using resource-saving alloying material. The study indicates that when the degree of scale reduction changed from 28 % to 67 % and 81 %, an increase in the manifestation of a solid solution of carbon and alloying elements in the α-Fe lattice was observed. At the same time, the intensity of the diffraction maxima of FeO and Fe3O4 decreased. In the reduced products, the presence of Fe3C, FeW3C, Fe3W3C, and WC was traced. With an increase in the degree of scale reduction from 28 % to 67 %, the disordered (of "loose" appearance) microstructure was replaced with the formed particles of round and multifaceted shape with different content of alloying elements. At the reduction stage of 81 %, the microstructure had a finely fibrous structure. Based on the suite of studies, the most acceptable degree of reduction of scale of high-speed steel, followed by the use of the obtained material as an alloying additive, is 81 %. At the same time, ensuring the degree of recovery at the level of 67 % would also suffice. This is due to the fact that residual carbon in the form of carbides provides an increased reducing ability and degree of assimilation of alloying elements with the restoration of the residual oxide component in the liquid metal during doping. Spongy microstructure contributes to faster dissolution, in relation to the corresponding standard ferroalloys. This ensures a reduction in the total smelting time and, as a result, a decrease in the energy consumed

Author Biographies

Viacheslav Borysov, Academician Yuriy Bugay International Scientific and Technical University

Head of Laboratory

Research Laboratory of Applied Materials Science

Oleksii Torubara, Academician Yuriy Bugay International Scientific and Technical University

Senior Researcher

Research Laboratory of Applied Materials Science

Vadym Volokh, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Mechanization of Production Processes in the Agro-Industrial Complex

Anatolii Poliakov, Volodymyr Dahl East Ukrainian National University

PhD, Associate Professor

Department of Machine Repair, Energy Facilities Operation and Labor Protection

Mykhail Yamshinskij, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Associate Professor

Department of Foundry Production

Ivan Lukianenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD

Department of Foundry Production

Andrey Andreev, Zaporizhzhia National University

Doctor of Pedagogical Sciences, Associate Professor, Head of Department

Department of General and Applied Physics

Tamara Bilko, National University of Life and Environmental Sciences of Ukraine

PhD, Associate Professor

Department of Department of Livestock Production Mechanization

Dmytro Zhuravel, Dmytro Motornyi Tavria State Agrotechnological University

Doctor of Technical Sciences, Professor

Department of Technical Systems and Technology in Livestock

Dmytro Ivanchenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Assistant

Department of Foundry Production

References

  1. Henckens, M. L. C. M., van Ierland, E. C., Driessen, P. P. J., Worrell, E. (2016). Mineral resources: Geological scarcity, market price trends, and future generations. Resources Policy, 49, 102–111. doi: https://doi.org/10.1016/j.resourpol.2016.04.012
  2. Poliakov, A., Dzyuba, A., Volokh, V., Petryshchev, A., Tsymbal, B., Yamshinskij, M. et al. (2021). Identification of patterns in the structural and phase composition of the doping alloy derived from metallurgical waste processing. Eastern-European Journal of Enterprise Technologies, 2 (12 (110)), 38–43. doi: https://doi.org/10.15587/1729-4061.2021.230078
  3. Sekiguchi, N. (2017). Trade specialisation patterns in major steelmaking economies: the role of advanced economies and the implications for rapid growth in emerging market and developing economies in the global steel market. Mineral Economics, 30 (3), 207–227. doi: https://doi.org/10.1007/s13563-017-0110-2
  4. Mechachti, S, Benchiheub, O., Serrai, S., Shalabi, M. (2013). Preparation of iron Powders by Reduction of Rolling Mill Scale. International Journal of Scientific & Engineering Research, 4 (5), 1467–1472. Available at: https://www.ijser.org/researchpaper/Preparation-of-Iron-Powders-by-Reduction-Rolling-Mill-Scale.pdf
  5. Grigor’ev, S. M., Petrishchev, A. S. (2012). Assessing the phase and structural features of the scale on P6M5Φ3 and P12M3K5Φ2 steel. Steel in Translation, 42 (3), 272–275. doi: https://doi.org/10.3103/s0967091212030059
  6. Smirnov, A. N., Petrishchev, A. S., Semiryagin, S. V. (2021). Reduction Smelting of Corrosion-Resistant Steel Waste: Aspects of Structural and Phase Transformations. Steel in Translation, 51 (7), 484–489. doi: https://doi.org/10.3103/s0967091221070093
  7. Tsymbal, B., Petryshchev, A., Anrieieva, L., Sharovatova, O. (2022). Improving Occupational Safety and Health in the Processing of Metallurgical Waste and Features of their Microstructure Transformation. Key Engineering Materials, 925, 187–196. doi: https://doi.org/10.4028/p-f9x0w1
  8. Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research International, 20 (10), 51–56. doi: https://doi.org/10.1016/s1006-706x(13)60176-4
  9. Ryndiaiev, V., Kholodiuk, O., Khmelovskyi, V., Petryshchev, A., Yushchenko, A., Fesenko, H. et al. (2021). Establishing patterns of the structural-phase transformations during the reduction of tungsten-containing ore concentrate with carbon. Eastern-European Journal of Enterprise Technologies, 1 (12 (109)), 16–21. doi: https://doi.org/10.15587/1729-4061.2021.225389
  10. Shveikin, G. P., Kedin, N. A. (2014). Products of carbothermal reduction of tungsten oxides in argon flow. Russian Journal of Inorganic Chemistry, 59 (3), 153–158. doi: https://doi.org/10.1134/s0036023614030206
  11. Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: https://doi.org/10.1016/s1003-6326(15)63731-1
  12. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: https://doi.org/10.3103/s0967091214050118
  13. Simonov, V. K., Grishin, A. M. (2013). Thermodynamic analysis and the mechanism of the solid-phase reduction of Cr2O3 with carbon: Part 1. Russian Metallurgy (Metally), 2013 (6), 425–429. doi: https://doi.org/10.1134/s0036029513060153
Identifying features in the structural and phase composition of the products of recycling of the scale of high-speed cutting steel by carbon thermal reduction

Downloads

Published

2022-12-30

How to Cite

Borysov, V., Torubara, O., Volokh, V., Poliakov, A., Yamshinskij, M., Lukianenko, I., Andreev, A., Bilko, T., Zhuravel, D., & Ivanchenko, D. (2022). Identifying features in the structural and phase composition of the products of recycling of the scale of high-speed cutting steel by carbon thermal reduction. Eastern-European Journal of Enterprise Technologies, 6(12 (120), 46–51. https://doi.org/10.15587/1729-4061.2022.269507

Issue

Section

Materials Science