Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276168

Keywords:

multidimensional forecasting, artificial intelligence, bio-inspired algorithms, heterogeneous intelligence objects

Abstract

A method of complex analysis and multidimensional forecasting of the state of intelligence objects is proposed to increase the accuracy of their state assessment. The object of research is decision support systems. The subject of research is the process of decision-making in management problems using artificial intelligence methods. The hypothesis of research is to increase the efficiency of decision-making with a given assessment reliability. The proposed method is based on a combination of fuzzy cognitive and temporal models, an advanced cat swarm optimization algorithm and evolving artificial neural networks. The method has the following sequence of actions:

‒ input of initial data;

‒ processing of initial data taking into account uncertainty about the state of heterogeneous intelligence objects;

‒ construction of a fuzzy temporal ontological model of heterogeneous intelligence objects;

‒ conclusion on the state of heterogeneous intelligence objects;

‒ correction of the fuzzy temporal ontological model;

‒ building a fuzzy relational temporal cognitive model of heterogeneous intelligence objects and forecasting the state of the intelligence object;

‒ training knowledge bases on heterogeneous intelligence objects.

The training procedure consists in learning the synaptic weights of the artificial neural network, the type and parameters of the membership function, as well as the architecture of individual elements and the architecture of the artificial neural network as a whole. The method makes it possible to increase the efficiency of data processing at the level of 18–25 % by using additional improved procedures. The proposed method should be used to solve the problems of evaluating complex and dynamic heterogeneous intelligence objects, characterized by a high degree of complexity.

Author Biographies

Olena Nechyporuk, National Aviation University

Doctor of Technical Sciences, Associate Professor

Department of Computerized Control Systems

Oleg Sova, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Sciences, Senior Research, Head of Department

Department of Automated Control Systems

Andrii Shyshatskyi, Research Center for Trophy and Perspective Weapons and Military Equipment

PhD, Senior Researcher, Head of Department

Department of Robotic Systems Research

Serhii Kravchenko, National Aviation University

PhD, Associate Professor

Department of Software Engineering

Oleksii Nalapko, Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD, Senior Research

Scientific-Research Laboratory of Automation of Scientific Researches

Oleh Shknai, Scientific-Research Institute of Military Intelligence

PhD, Leading Researcher

Scientific-Research Department

Serhii Klimovych, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

PhD, Head of Department

Department of Information Protection in Telecommunication Systems and Networks

Olha Kravchenko, National Aviation University

Assistant

Department of Software Engineering

Oleksandr Kovbasiuk, Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD, Head of Scientific-Research Department

Scientific-Research Department

Anton Bychkov, Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD, Head

Scientific-Research Laboratory of Automation of Scientific Researches

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10, 33‒47. doi: doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Zhaldak, H. (2021). Determination of features of development of modern theories of management. Technology Audit and Production Reserves, 1 (4 (57)), 10–13. doi: https://doi.org/10.15587/2706-5448.2021.225380
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  20. Papa, A., Shemet, Y., Yarovyi, A. (2021). Analysis of fuzzy logic methods for forecasting customer churn. Technology Audit and Production Reserves, 1 (2 (57)), 12–14. doi: https://doi.org/10.15587/2706-5448.2021.225285
  21. Chapran, S. (2021). Analysis of methodological approaches to the construction of dynamic systems of investment in information development. Technology Audit and Production Reserves, 6 (4 (62)). doi: https://doi.org/10.15587/2706-5448.2021.248312
  22. Chandar, K. S., Punjabi, H. (2022). Cat Swarm Optimization Algorithm Tuned Multilayer Perceptron for Stock Price Prediction. International Journal of Web-Based Learning and Teaching Technologies, 17 (7), 1–15. doi: https://doi.org/10.4018/ijwltt.303113
  23. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  24. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  25. Emel'yanov, V. V., Kureychik, V. V., Kureychik, V. M., Emel'yanov, V. V. (2003). Teoriya i praktika evolyutsionnogo modelirovaniya. Moscow: Fizmatlit, 432.
  26. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  27. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  28. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  29. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  30. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16
  31. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292
  32. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  33. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. doi: https://doi.org/10.15587/1729-4061.2018.126578
  34. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. doi: https://doi.org/10.15587/1729-4061.2017.96321
  35. Lovska, A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54.
  36. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: https://doi.org/10.14311/ap.2020.60.0478
  37. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. doi: https://doi.org/10.15587/1729-4061.2022.266009
Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects

Downloads

Published

2023-04-29

How to Cite

Nechyporuk, O., Sova, O., Shyshatskyi, A., Kravchenko, S., Nalapko, O., Shknai, O., Klimovych, S., Kravchenko, O., Kovbasiuk, O., & Bychkov, A. (2023). Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects . Eastern-European Journal of Enterprise Technologies, 2(4 (122), 31–41. https://doi.org/10.15587/1729-4061.2023.276168

Issue

Section

Mathematics and Cybernetics - applied aspects