Optimizing biogas production using artificial neural network

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276431

Keywords:

biogas plant, artificial neural network, biogas yield potential, anaerobic digestion

Abstract

The object of this study is the operating parameters of the anaerobic digestion unit. The study aims to increase the potential of biogas production. The task to select the optimal parameters of the working process of anaerobic digestion has been solved.

A model of cumulative biogas and methane output in the process of anaerobic waste digestion has been constructed, which is conceptualized using the method of artificial neural network. The model is built on the basis of 11 process-related variables, such as hydraulic retention time, pH, operating temperature, etc.

The plant parameters, leading to the highest volume of biogas production, were selected. It was determined that the optimal amount of biogas can be brought to 90 %, which exceeds the maximum value obtained from factory records by 12.6 % to 700 m3/t. Working conditions that led to optimal methane production were defined as the temperature of 39 °C, the total solids of 4.5 %, the organic percentage of 97.8 %, and pH 8.0.

It was found that biogas production is the highest at temperature within the thermophilic range while the local maximum is achieved in the mesophilic temperature range.

The model built serves to determine the optimal operating parameters for maximum biogas production and could be used to optimize biogas production productivity using limited experimental data. The model also makes it possible to predict the performance of anaerobic digestion under untested conditions.

It is possible to practically use the developed biogas production model when monitoring the operation of the anaerobic digestion unit, to increase the efficiency of the process, and when adjusting the working conditions of the methane tank

Author Biographies

Bohdana Komarysta, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Artificial Intelligence

Educational and Research Institute for Applied System Analysis

Iryna Dzhygyrey, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Artificial Intelligence

Educational and Research Institute for Applied System Analysis

Vladyslav Bendiuh, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD, Associate Professor

Department of Artificial Intelligence

Educational and Research Institute for Applied System Analysis

Olha Yavorovska, JSC "Vinnytsiagaz"

PhD

Antonina Andreeva, Admiral Makarov National University of Shipbuilding

PhD, Associate Professor

Department of Ecology and Environmental Technologies

Kateryna Berezenko, Luhansk Taras Shevchenko National University

Senior Lecturer

Department of Horticulture and Ecology

Iryna Meshcheriakova, Prydniprovska State Academy of Civil Engineering and Architecture

Doctor of Philosophy, Associate Professor

Department of Life Safety

Oksana Vovk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Professor, Head of Department

Department of Geoengineering

Institute of Energy Saving and Energy Management

Sofiia Dokshyna, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Postgraduate Student, Assistant

Department of the Automation of Electrical and Mechatronic Complexes

Institute of Energy Saving and Energy Management

Ivan Maidanskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Senior Lecturer

Department of the Automation of Electrical and Mechatronic Complexes

Institute of Energy Saving and Energy Management

References

  1. Optimal use of biogas from waste streams. an assessment of the potential of biogas from digestion in the EU beyond 2020 (2016). Available at: https://energy.ec.europa.eu/optimal-use-biogas-waste-streams-assessment-potential-biogas-digestion-eu-beyond-2020_en
  2. Supply, transformation and consumption of renewables and wastes. Eurostat. Available at: https://ec.europa.eu/eurostat/databrowser/view/NRG_CB_RW/default/table?lang=en&category=nrg.nrg_quant.nrg_quanta.nrg_cb
  3. European Biogas Association (EBA) (2016). Available at: https://issuu.com/europeanbiogasassociationeba/docs/eba_annual_report_2016
  4. Pavliukh, L., Shamanskyi, S., Boichenko, S., Jaworski, A. (2020). Evaluation of the potential of commercial use of microalgae in the world and in Ukraine. Aircraft Engineering and Aerospace Technology, 93 (3), 429–436. doi: https://doi.org/10.1108/aeat-08-2020-0181
  5. Topilnytskyy, P., Romanchuk, V., Boichenko, S., Golych, Y. (2014). Physico-Chemical Properties and Efficiency of Demulsifiers based on Block Copolymers of Ethylene and Propylene Oxides. Chemistry & Chemical Technology, 8 (2), 211–218. doi: https://doi.org/10.23939/chcht08.02.211
  6. Shkilniuk, I., Boichenko, S. (2020). Biological Risk of Aviation Fuel Supply. Studies in Systems, Decision and Control, 179–199. doi: https://doi.org/10.1007/978-3-030-48583-2_12
  7. Abbasi, T., Tauseef, S. M., Abbasi, S. A. (2012). Biogas Energy. Springer. doi: https://doi.org/10.1007/978-1-4614-1040-9
  8. Batstone, D. J., Puyol, D., Flores-Alsina, X., Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14 (4), 595–613. doi: https://doi.org/10.1007/s11157-015-9376-4
  9. Zaher, U., Li, R., Jeppsson, U., Steyer, J.-P., Chen, S. (2009). GISCOD: General Integrated Solid Waste Co-Digestion model. Water Research, 43 (10), 2717–2727. doi: https://doi.org/10.1016/j.watres.2009.03.018
  10. Dudar, I. N., Yavorovska, O. V., Zlepko, S. M., Vinnichuk, A. P., Kisała, P., Shortanbayeva, A., Borankulova, G. (2021). Predicting Volume and Composition of Municipal Solid Waste Based on ANN and ANFIS Methods and Correlation-Regression Analysis. Biomass as Raw Material for the Production of Biofuels and Chemicals, 13–23. doi: https://doi.org/10.1201/9781003177593-2
  11. Ali Abdoli, M., Falah Nezhad, M., Salehi Sede, R., Behboudian, S. (2011). Longterm forecasting of solid waste generation by the artificial neural networks. Environmental Progress & Sustainable Energy, 31 (4), 628–636. doi: https://doi.org/10.1002/ep.10591
  12. Azadi, S., Karimi-Jashni, A. (2016). Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran. Waste Management, 48, 14–23. doi: https://doi.org/10.1016/j.wasman.2015.09.034
  13. Palamar, M. I., Strembitskyi, M. O., Pasternak, Yu. V. (2013). Doslidzhennia efektyvnosti zastosuvannia neironnoi merezhi v systemi keruvannia neliniynymy dynamichnymy obiektamy. Visnyk Natsionalnoho universytet "Lvivska politekhnika", 753, 9–14. Available at: https://elartu.tntu.edu.ua/handle/123456789/3094
  14. Palaniswamy, D., Ramesh, G., Sivasankaran, S., Kathiravan, N. (2017). Optimising biogas from food waste using a neural network model. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 170 (4), 221–229. doi: https://doi.org/10.1680/jmuen.16.00008
  15. Almomani, F. (2020). Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel, 280, 118573. doi: https://doi.org/10.1016/j.fuel.2020.118573
  16. Dahunsi, S. O., Oranusi, S., Owolabi, J. B., Efeovbokhan, V. E. (2016). Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization. Bioresource Technology, 221, 517–525. doi: https://doi.org/10.1016/j.biortech.2016.09.065
  17. Mougari, N. E., Largeau, J. F., Himrane, N., Hachemi, M., Tazerout, M. (2021). Application of artificial neural network and kinetic modeling for the prediction of biogas and methane production in anaerobic digestion of several organic wastes. International Journal of Green Energy, 18 (15), 1584–1596. doi: https://doi.org/10.1080/15435075.2021.1914630
  18. Abu Qdais, H., Bani Hani, K., Shatnawi, N. (2010). Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources, Conservation and Recycling, 54 (6), 359–363. doi: https://doi.org/10.1016/j.resconrec.2009.08.012
  19. Connaughton, S., Collins, G., O’Flaherty, V. (2006). Development of microbial community structure and actvity in a high-rate anaerobic bioreactor at 18°C. Water Research, 40 (5), 1009–1017. doi: https://doi.org/10.1016/j.watres.2005.12.026
  20. Huber-Humer, M. et al. (2020). Klimagasmonitoring zur Optimierung der Energiebilanz und Verfahrenseffizienz bei Biogasanlagen. Available at: https://www.klimafonds.gv.at/wp-content/uploads/sites/16/BGR0032014EEneueEnergien2020.pdf
  21. Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. V., Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, 174–195. doi: https://doi.org/10.1016/j.rser.2014.07.011
  22. Panigrahi, S., Dubey, B. K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143, 779–797. doi: https://doi.org/10.1016/j.renene.2019.05.040
  23. Rohstoffe, F. N. (2012). Guide to Biogas from Production to Use. Gülzow.
  24. Gil, A., Siles, J. A., Martín, M. A., Chica, A. F., Estévez-Pastor, F. S., Toro-Baptista, E. (2018). Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge. Renewable Energy, 115, 917–925. doi: https://doi.org/10.1016/j.renene.2017.07.112
  25. Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99 (10), 4044–4064. doi: https://doi.org/10.1016/j.biortech.2007.01.057
  26. Emerson, K., Russo, R. C., Lund, R. E., Thurston, R. V. (1975). Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 32 (12), 2379–2383. doi: https://doi.org/10.1139/f75-274
  27. Braun, R., Weiland, P., Wellinger, A. (2009). Biogas from energy crop digestion. IEA Bioenergy. Available at: https://www.ieabioenergy.com/wp-content/uploads/2011/10/Update_Energy_crop_2011.pdf
Optimizing biogas production using artificial neural network

Downloads

Published

2023-04-29

How to Cite

Komarysta, B., Dzhygyrey, I., Bendiuh, V., Yavorovska, O., Andreeva, A., Berezenko, K., Meshcheriakova, I., Vovk, O., Dokshyna, S., & Maidanskyi, I. (2023). Optimizing biogas production using artificial neural network. Eastern-European Journal of Enterprise Technologies, 2(8 (122), 53–64. https://doi.org/10.15587/1729-4061.2023.276431

Issue

Section

Energy-saving technologies and equipment