An alternative technology for catalytical processes. the aerosol nanocatalysis

Authors

  • Марат Аронович Гликин Technological Institute of V. Dal East-Ukrainian National University (Severodonetsk) Sovetskiy 59-а, Severodonetsk, Ukraine, 93400, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.27700

Keywords:

catalyst, nanoparticle, chemical technology, efficiency, heterogeneous catalysis, aerosol nanocatalysis

Abstract

The reasons of searching for alternative chemical catalytic technologies were analyzed in the paper. Oxidation of organic components with a complex molecule at high temperature leads to precipitation of carbon and some reaction products on the catalyst supports and in their pores, which reduces the efficiency of catalysis and requires its replacement. In aerosol nanocatalysis technology, reactants and continuously comminuted catalyst particles are involved in chemical interaction. It was experimentally shown that catalyst aerosol, even low-activity Fe2O3, only 0.3g/m3 of the reactor is enough in the oxidation process. This is two orders of magnitude less than during the catalysis on the support. Moreover, there is no need for expensive support. This technology will lead to increased reaction rate by 104-106 times, reduced catalyst consumption by the same value, decreased reaction temperature by 100-200oC; increased selectivity, reduced reactor volume by 10-100 times. Currently, about 40 reactions of the environmental focus were carried out in a laboratory using spray nanocatalysis. Target syntheses, which are of interest to the industry: natural gas conversion, catalytic cracking of vacuum gas oil on different catalysts, oxydechlorination, oxydehydrochlorination, vinylation, ammonia oxidation for nitric acid production, disposal of acid tars and coke production waste, etc. were also investigated. Each process showed high economic effect.

Author Biography

Марат Аронович Гликин, Technological Institute of V. Dal East-Ukrainian National University (Severodonetsk) Sovetskiy 59-а, Severodonetsk, Ukraine, 93400

Professor

Department of technologies of organic substances, fuels and polymers

References

  1. 1. Glikin, M. A., Memedliaev, Z. N., Hatylov, Yu. A. at el. (USSR). (29.02.1992). A. s. № 1715392 SSSR, MPK V 01 J 8/18. Sposob osushchestvlenyia khymycheskykh protsessov (Khymprotsess-88). № 4470206/04; appl. 04.08.88; Biul. № 8, 6 p.

    2. Kutakova, D. A., Glikin, M. A., Brodskyi, A. L. (1985). Hlubokoe okyslenye nekotorykh orhanycheskykh soedynenyi v KHT y optymyzatsyia tekhnolohycheskoi skhemy dlia okyslenyia stochnykh vod. Tekhnolohycheskye protsessy na osnove katalytycheskykh heneratorov tepla. Novosybyrsk, 21-32.

    3. Glikin, M. A., Glikina, I. M., Kauffeldt, E. (2005, March 1). Investigations and Applications of Aerosol Nano-catalysis in a Vibrofluidized (Vibrating) Bed. Adsorption Science & Technology, Vol. 23, № 2, 135–144. http://dx.doi.org/10.1260/0263617054037781

    4. Glikina, I., Glikin, M., Kudryavtsev, S. (Jan 2009). Specific control parameters in the technology of aerosol nanocatalysis. Annales UMCS, Chemistry, Vol. 64, 218-226. http://dx.doi.org/10.2478/v10063-008-0016-5

    5. Glikin, M. A., Kutakova, D. A., Glikina, I. M., Volga State, A. I. (2001, March 1). A New Way to Increase Catalyst Activity. Adsorption Science & Technology, Vol. 19, № 2, 101–115. http://dx.doi.org/10.1260/0263617011494015

    6. Glikin, M. A. (1996). Aerozolnyi katalyz. Teoretycheskye osnovy khymycheskoi tekhnolohyy, T. 30, № 4, 430-435.

    7. Gliknn, M. A. (UA), Pihtovnikov, B. I. (RU), Novitskiy, V. S. (UA), Memedliaev, Z. N. (UA), Kutakova, D. A. (UA), Viks, I. N. (UA), Prin, E. M. (UA); applicant and patentee LLC "NITROHIM" (RU). (20.06.97). Sposob osuschesvleniia gazofaznyh himicheskih protsessov (aierozol'nyy kataliz). Pat. 2081695 (RF) MPK V 01 J 8/8, 8/32. № 94011388; appl. 01.04.94, Biul. №17, 14 p.

    8. Glikin, M. A., Kutakova, D. A., Prin, E. M., Fursov, E. V. (1999). Aerozol'nyy kataliz. Vozmozhnosti, problemy, resheniia. Himicheskaia promyshlennost, № 3, 15-21.

    9. Glikin, M. A., Arhipov, A. G., Baranova, L. A., Glikina, I. M. (2007). Aerozol'nyy nanokataliz v vibroozhizhennom sloe. Oksidegidrohlorirovanie hlorbenzla. Himichna promislovist' Ukraini, №1, 25-29.

    10. In: Leboda, R., Tarasevich, Yu., Aksenenko, E. (2004). The process of hydrocarbon cracking to gasoline and olefins by aerosol nanocatalysis technology. Abstracts of VIII Ukrainian-Polish Symposium «Theoretical and experimental studies of interfacial phenomena and their technological applications», September 2004, Odessa, 83-87.

    11. Glikin, M., Kudryavtsev, S., Mahmmod, S. (2012, April 17). Conversion of natural gas in the process of steam reforming via aerosol nanocatalysis technology. Chemical Technology, Vol. 59, № 1, 5-12. http://dx.doi.org/10.5755/j01.ct.59.1.1523

    12. Shershnev, S. A., Glikina, I. M., Glikin, M. A. (2011). Aerozol'nyy nanokataliz – al'ternativnaia tehnologiia polucheniia uglevodorodov iz SO i N2 v gazovoy faze. Voprosia himii i himicheskoy tehnologii, №6, 113-119.

    13. In: Tarasevich, Yu., Leboda, R. (2010). Recovery of nitrogen oxides of flue gas by aerosol nanocatalysis. Abstracts of XII Polish-Ukrainian Symposium "Theoretical and experimental studies of interfacial phenomena and their technological application", August 2010, Kielce-Ameliowka, 79.

    14. Chlenov, V. A., Mihaylov, N. V. (1972). Vibrokipiaschiy sloy. M.: Nauka, 325.

    15. In: Tarasevich, Yu., Leboda, R. (2010). Mathemathical description of processes in aerosol nanocatalysis technology. Abstracts of XII Polish-Ukrainian Symposium "Theoretical and experimental studies of interfacial phenomena and their technological application", August 2010, Kielce-Ameliowka, 36.

Published

2014-10-13

How to Cite

Гликин, М. А. (2014). An alternative technology for catalytical processes. the aerosol nanocatalysis. Eastern-European Journal of Enterprise Technologies, 5(6(71), 4–11. https://doi.org/10.15587/1729-4061.2014.27700

Issue

Section

Technology organic and inorganic substances