Design of an intelligent system to control educational laboratory equipment based on a hybrid mini-power plant

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.277835

Keywords:

hybrid power plant, intelligent system, solar panel, controller, educational process

Abstract

The object of research is the processes of energy conversion based on the use of alternative energy sources with an intelligent control system of actuators. This technological advancement is part of the equipment at the laboratory of dispatch control over power supply of Ternopil Ivan Puluj National Technical University. The research and the designed system could increase the level of training of future specialists for production activities during the educational process. Another task addressed was to provide technological production with practically trained specialists who could successfully work under conditions of its high automation and informatization. As a result of the research, an operating model of a hybrid solar mini-power plant and a controller with a Wi-Fi module were constructed. On the basis of the designed controller, an intelligent control system of actuators was built, which is powered by this power plant. Owing to the flexible configuration system, the controller is easily adjusted for various production tasks while the controller software provides the possibility of updating and expanding its functionality in the future. The controller has a web interface that allows monitoring and debugging from browsers without using specialized applications. A feature of the designed intelligent control system is that it can operate continuously owing to power from a hybrid solar power plant. The power plant built operates both from solar energy and from a centralized network and rechargeable batteries under an automatic mode. The results of research and technological advancements could be useful in forming practical skills of would-be specialists in the design and implementation of energy-efficient technologies, as well as intelligent control systems in the electric power industry

Author Biographies

Bogdan Orobchuk, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Electrical Engineering

Oleh Buniak, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Electrical Engineering

Ivan Sysak, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Electrical Engineering

Serhii Babiuk, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Electrical Engineering

References

  1. Orobchuk, B., Sysak, I., Babiuk, S., Rajba, T., Karpinski, M., Klos-Witkowska, A. et al. (2017). Development of simulator automated dispatch control system for implementation in learning process. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: https://doi.org/10.1109/idaacs.2017.8095078
  2. Orobchuk, B., Rafalyuk, O., Piskun, S. (2017). Introduction of telemechanics systems for power objects management in the educational process. Materialy III Vseukrainskoi naukovo-tekhnichnoi konferentsii „Teoretychni ta prykladni aspekty radiotekhniky i pryladobuduvannia“, 224–226. Available at: https://elartu.tntu.edu.ua/bitstream/lib/24250/2/FPT_2017_Orobchuk_B-Introduction_of_telemechanics_224-226.pdf
  3. Stognii, B. S., Kyrylenko, O. V., Prahovnyk, O. V., Denysiuk, S. P. (2012). The evolution of intelligent electrical networks and their prospects in Ukraine. Tekhnichna elektrodynamika, 5, 52–67. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/62229/08-Stogny.pdf?sequence=1
  4. Kompleks dystantsiinoho keruvannia tekhnolohichnymy protsesamy «Strila-M» na osnovi PK. Tekhnichnyi opys ta instruktsiia z ekspluatatsiyi (2010). Ternopil.
  5. Soniachni elektrostantsiyi. Solar Systym. Available at: https://solarsystem.com.ua/gibrid-stants%D1%96yi/
  6. Kudria, S. O. (Ed.) (2020). Vidnovliuvani dzherela enerhiyi. Kyiv: Instytut vidnovliuvanoi enerhetyky NANU, 392.
  7. Perspektyvy rozvytku hibrydnykh enerhetychnykh system. Enerho Dzherela. Available at: https://enerhodzherela.com.ua/analityka/%D0%9F%D0%B5%D1%80%D1%81%D0%BF%D0%BA%D1%82%D0%B8%D0%B2%D0%B8-%D1%80%D0%BE%D0%B7%D0%B2%D0%B8%D1%82%D0%BA%D1%83-%D0%B3%D1%96%D0%B1%D1%80%D0%B8%D0%B4%D0%BD%D0%B8%D1%85-%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D1%85-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC
  8. Mkhitaryan, N. M., Machulin, V. F. (2006). Problemy razvitiya energetiki Ukrainy. Vozobnovlyaemaya i netraditsionnaya energetika. Nauka ta innovatsiyi, 2 (2), 63–75.
  9. Orobchuk, B. Ya., Staryk, Yu. I. (2019). Vprovadzhennia tekhnolohichnoi radiomerezhi obminu danymy. Materialy VIII Mizhnarodnoi naukovo-tekhnichnoi konferentsiyi molodykh uchenykh ta studentiv. Aktualni zadachi suchasnykh tekhnolohiy. Ternopil, 63–64. Available at: https://elartu.tntu.edu.ua/bitstream/lib/31036/2/MNTKv3_2019v3_Orobchuk_B_Y-Implementation_of_technological_63-64.pdf
  10. European SmartGrids Technology Platform: vision and Strategy for Europe’s Electricity Networks of the Future (2006). European Commission. Available at: https://op.europa.eu/en/publication-detail/-/publication/a2ea8d86-7216-444d-8ef5-2d789fa890fc/language-en
  11. Peterheria, Yu. S., Zhuikov, V. Ya., Tereshchenko, T. O. (2008). Intelektualni systemy zabezpechennia enerhozberezhennia zhytlovykh budynkiv. Kyiv: Media-PRES, 259. Available at: https://ela.kpi.ua/bitstream/123456789/41110/1/Intellectual%20system_textbook.pdf
  12. Stadnik, M. I., Vydmysh, A. A., Shtuts, A. A., Kolisnyk, M. A. (2020). Intelektualni systemy v elektroenerhetytsi. Teoriya ta praktyka. Vinnytsia: TOV «TVORY», 332. Available at: http://socrates.vsau.org/method/getfile.php/25077.pdf?card_id=15792
  13. Hunko, I. V., Halushchak, O. O., Kravets, S. M. (2019). Analiz tekhnolohichnykh system. Obgruntuvannia inzhenernykh rishen. Vinnytsia: VNAU, 216.
  14. Orobchuk, B., Kit, N. (2022). Study of model operation modes solar power plant in the MATLAB package. Materialy XI Mizhnarodnoi naukovo-praktychnoi konferentsiyi molodykh uchenykh ta studentiv «AKTUALNI ZADAChI SUChASNYKh TEKhNOLOHII», 84–85. Available at: https://elartu.tntu.edu.ua/bitstream/lib/40669/2/MNPK_2022_Orobchuk_B-Study_of_model_operation_84-85.pdf
  15. Invertor dlya solnechnykh batarey. SolarSoul.net. Available at: https://solarsoul.net/invertor-dlya-solnechnyx-batarej
  16. Surface Meteorology and Solar Energy. Available at: http://eosweb.larc.nasa.gov/sse/
  17. Solar Energy. Bloomberg. Available at: https://www.bloomberg.com/quicktake/solar-energy
  18. Shelest, M. B., Haida, P. I. (2014). Osnovy budovy ta ekspluatatsiyi akumuliatornykh batarei. Sumy: Sumskyi derzhavnyi universytet, 210. Available at: https://essuir.sumdu.edu.ua/bitstream/123456789/37035/1/baterei.doc
  19. Bekirov, E., Voskresenskaya, S., Khimich, A. (2010). Raschet sistemy avtonomnogo energosnabzheniya s ispol'zovaniem fotoelektricheskikh preobrazovateley. Siferopol': Nats. akad. prirod. i kurort, 210. Available at: https://obuchalka.org/2014041876892/raschet-sistemi-avtonomnogo-energosnabjeniya-s-ispolzovaniem-fotoelektricheskih-preobrazovatelei-bekirov-e-a-voskresenskaya-s-n-himich-a-p-2010.html
  20. Kozhemiako, V. P., Dombrovskyi, V. H., Zherdetskyi, V. F., Malinovskyi, V. I., Prytuliak, H. V. (2011). Analitychnyi ohliad suchasnykh tekhnolohiy fotoelektrychnykh peretvoriuvachiv dlia soniachnoi enerhetyky. Optyko-elektronni informatsiyno-enerhetychni tekhnolohiyi, 2, 141–157. Available at: https://oeipt.vntu.edu.ua/index.php/oeipt/article/download/239/238
  21. Soniachna enerhetyka v Ukraini. AVENSTON. Available at: https://avenston.com/articles/solar-in-ukraine-2019/
  22. Handbook part I: Software. Meteonorm. Available at: https://meteonorm.com/assets/downloads/mn73_software.pdf
  23. Kontrolery zariadu AKB. Solar - Tech. Available at: https://solar-tech.com.ua/ua/inverters%20and%20charge%20controllers/battery-charge-controllers/
  24. Avtomatyzovana systema dyspetcherskoho keruvannia «Strila». Tekhnichnyi opys i instruktsiya z ekspluatatsiyi (2016). Ternopil.
  25. Vse, chto trebuetsya dlya sozdaniya otlichnykh prilozheniy. Available at: https://visualstudio.microsoft.com/ru/free-developer-offers/
  26. Ubiquiti Networks – Wi-Fi i Merezheve obladnannia. Available at: https://www.ui.com/
  27. Orobchuk, B., Koval, V. (2020). Development and research of Wi-Fi network for receiving and transmitting telemechanical information in the training laboratory. Scientific Journal of the Ternopil National Technical University, 99 (3), 124–131. doi: https://doi.org/10.33108/visnyk_tntu2020.03.124
  28. Orobchuk, B., Sysak, I., Babiuk, S., Karpinski, M., Jancarczyk, D. (2020). Development and implementation of a local area wireless network in the educational process on the basis of the dispatch control simulator. Przetwarzanie, transmisja i bezpieczeństwo informacji. Available at: https://www.engineerxxi.ath.eu/wp-content/uploads/2020/12/engineerxxi_2020_vol2_25.pdf
  29. Mikroprotsesorni ta mikrokontrolerni systemy: Laboratornyi praktykum (2021). Kyiv: KPI im. Ihoria Sikorskoho, 247. Available at: https://ela.kpi.ua/bitstream/123456789/43054/1/MP_ta_MKS_2_LabPrakt.pdf
Design of an intelligent system to control educational laboratory equipment based on a hybrid mini-power plant

Downloads

Published

2023-04-29

How to Cite

Orobchuk, B., Buniak, O., Sysak, I., & Babiuk, S. (2023). Design of an intelligent system to control educational laboratory equipment based on a hybrid mini-power plant . Eastern-European Journal of Enterprise Technologies, 2(9 (122), 59–71. https://doi.org/10.15587/1729-4061.2023.277835

Issue

Section

Information and controlling system