Development of heat-mass exchange optimization methods using fractal convolutions of computer tomograms
DOI:
https://doi.org/10.15587/1729-4061.2014.27978Keywords:
heat-mass exchange, heat-mass exchange surface, heterogeneous flows, computer tomogram, fractal convolutionAbstract
It was shown that designing heat-mass exchange processes and devices requires the methods of non-destructive measurement of the real surface area of such an exchange. Since this surface is, usually, very complicated, convolutions of images, obtained in the computer tomograph were proposed. Tomograms of synthetic granite, confirming the technical feasibility of such analysis method and its informativeness in terms of further heterogeneous structure investigation were obtained.
Three types of convolutions: convolution in the form of Hausdorff dimensions of the section boundaries, convolution using contraction mapping and convolution using parabolic transformation were considered. The presence of a maximum on the dependence of the heat-mass exchange rate on the working surface convolution results, which allows to formulate and solve the problems of optimizing the parameters of technological processes and designs of heat-mass exchange devices was theoretically justified and experimentally confirmed.
Practical testing of the proposed optimization method in designing the packed absorber was performed. As a result of using the proposed method, an increase in the absorber performance by 16-23% without increasing its size was achieved.
References
1. prEN ISO 13790. Thermal performance of buildings (2002). Calculation of energy use for space heating, 10–31.
2. Valancius, K., Skrinska, A. (2002). Transient heat conduction process in the multilayer wall under the influence of solar radiation. Improving human potential program, 179–185.
3. Kavetskiy, G. D., Kasyanenko, V. P. (2008). Protsessy i apparaty pishchevoy tekhnologii, 591.
4. Realnaya struktura tverdogo tela (2006). Available at: http://www.fnm.msu.ru/documents/15real15.pdf (Last accessed: 12.07.2014).
5. Dytnerskiy, Yu. I. (1995). Protsessy i apparaty khimicheskoy tekhnologii, 1, 2.
6. Kostrova, G. V., Saveleva, O. S., Stanovskiy, O. L. (2011). Obladnannya naftogazovoi ta khіmіchnoi galuzі, 145.
7. Levin, G. G., Vishnyakov, G. N. (1989). Opticheskaya tomografiya, 224.
8. Natterer, F. (1990). Matematicheskiye aspekty kompyuternoy tomografii, 288.
9. Canny, J. (1986). A Computational Approach to Edge Detection. Transactions on pattern analysis and machine intelligence, IEEE, 6, 679–698.
10. Aizenberg, I., Butakoff, C. (2002). Image Processing Using Cellular Neural Networks Based on Multi-Valued and Universal Binary Neurons. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 32, 169–188.
11. Feder, Ye. (1991). Fraktaly, 254.
12. Nomoyev, A. V., Vikulina, L. S. (2012). Fraktalnaya razmernost granits zeren keramiki s nanodispersnymi dobavkami. Zhurnal tekhnicheskoy fiziki, 82 (12), 139–142.
13. Bozhokin, S. V., Parshin, D. A. (2001). Fraktaly i multifraktaly. NITs «Regulyarnaya i khaoticheskaya dinamika», 128.
14. Izmerov, M. A. (2006). Metody opredeleniya fraktalnoy razmernosti inzhenernykh poverkhnostey. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 3 (11), 10–19.
15. Mandelbrot, B. (2002). Fraktalnaya geometriya prirody, 656.
16. Lauwerier, H. A., Kaandorp, J. A. (1987). Fractals (Mathematics, Programming and Applications). Report CS-R8762, 1–33.
17. Lin, H., Venetsanopoulos, A. N. (1996). Fast pyramidal search for perceptually based fractal image compression. Department of Electrical and Computer Engineering, 1–4. doi: http://dx.doi.org/10.1109/icip.1996.559461
18. Fisher, Y., Prusinkiewicz, P. (1992). Fractal image compression. SIGGRAPH’92 Course Notes: From Folk Art to Hyperreality, 1–21.
19. Vostrov, G. N., Abu Ayash, T. A. (2001). Printsip szhimayushchikh otobrazheniy i ego primeneniye dlya fraktalnogo szhatiya izobrazheniy. Trudy Odesskogo politekhnicheskogo universiteta, 2 (14), 96–99.
20. Kronover, P. M. (2000). Fraktaly i khaos v dinamicheskikh sistemakh, 198.
21. Kolmogorov, A. N., Fomin, S. V. (1989). Elementy teorii funktsiy i funktsionalnogo analiza, 267.
22. Vostrov, G. M., Abu Ayash, T. A., Stanovskiy, P. O. (2005). Do pitannya pro fraktalne koduvannya vіdeopotokіv. Naukovі notatki. Mіzhvuzіvskiy zbіrnik, 17, 41–48.
23. Tonkonogiy, V. M., Stanovskiy, P. A. (2005). Videoobrabotka izobrazheniy v sisteme avtomaticheskogo izmereniya defektnosti iznosostoykikh pokrytiy na rezhushchem instrumente. Trudy Odesskogo politekhnicheskogo universiteta, 1 (23), 112–115.
24. Stanovskiy, P. O., Malakhov, E. V., Arsіrіy, O. O. (2007). Rozrobka metodu fraktalnogo koduvannya-dekoduvannya vіdeopotokіv. Trudy Odesskogo politekhnicheskogo universiteta, 2 (28), 113–116.
25. Laptev, A. G., Farahov, M. I., Mineev, N. G. (2010). Osnovy rascheta i modernizatsiya teplomassoobmennyh ustanovok v neftekhimii, 574.
26. Laptev, A. G., Nikolaev, N. A., Basharov, M. M. (2011). Metody intensifikatsii i modelirovanie teplomassoobmennyh protsessov, 335.
27. Skoblo, A. I., Molokanov, Yu. K., Vladimirov, A. I., Shchelkunov, V. A. (2000). Protsessy i apparaty neftegazopererabotki i neftekhimii, 677.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Александр Леонидович Становский, Оксана Степановна Савельева, Игорь Валентинович Прокопович, Алла Владимировна Торопенко, Марианна Александровна Духанина
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.