Development of heat-mass exchange optimization methods using fractal convolutions of computer tomograms

Authors

  • Александр Леонидович Становский Odessa National Polytechnical University Shevchenko 1, Odessa, Ukraine, 65044, Ukraine https://orcid.org/0000-0002-0360-1173
  • Оксана Степановна Савельева Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed, Ukraine https://orcid.org/0000-0002-0453-4777
  • Игорь Валентинович Прокопович Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed, Ukraine https://orcid.org/0000-0002-8059-6507
  • Алла Владимировна Торопенко Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed, Ukraine https://orcid.org/0000-0002-2852-1495
  • Марианна Александровна Духанина Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed, Ukraine https://orcid.org/0000-0002-3344-3305

DOI:

https://doi.org/10.15587/1729-4061.2014.27978

Keywords:

heat-mass exchange, heat-mass exchange surface, heterogeneous flows, computer tomogram, fractal convolution

Abstract

It was shown that designing heat-mass exchange processes and devices requires the methods of non-destructive measurement of the real surface area of such an exchange. Since this surface is, usually, very complicated, convolutions of images, obtained in the computer tomograph were proposed. Tomograms of synthetic granite, confirming the technical feasibility of such analysis method and its informativeness in terms of further heterogeneous structure investigation were obtained.

Three types of convolutions: convolution in the form of Hausdorff dimensions of the section boundaries, convolution using contraction mapping and convolution using parabolic transformation were considered. The presence of a maximum on the dependence of the heat-mass exchange rate on the working surface convolution results, which allows to formulate and solve the problems of optimizing the parameters of technological processes and designs of heat-mass exchange devices was theoretically justified and experimentally confirmed.

Practical testing of the proposed optimization method in designing the packed absorber was performed. As a result of using the proposed method, an increase in the absorber performance by 16-23% without increasing its size was achieved.

Author Biographies

Александр Леонидович Становский, Odessa National Polytechnical University Shevchenko 1, Odessa, Ukraine, 65044

Professor

Department of Oilgas and chemical mechanical engineering

Оксана Степановна Савельева, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed

Doctor of science, Docent

Department of Oilgas and chemical mechanical engineering

Игорь Валентинович Прокопович, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed

Candidate of sciences, Docent

Department of Technology and management of the casting process

Алла Владимировна Торопенко, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed

Master

Department of Oilgas and chemical mechanical engineering 

Марианна Александровна Духанина, Odessa National Polytechnic University Shevchenko 1, Odessa, Ukraine, 65044 For information about the availability of printed

Master

Department of Metal-cutting machines, metrology and certification

References

  1. 1. prEN ISO 13790. Thermal performance of buildings (2002). Calculation of energy use for space heating, 10–31.

    2. Valancius, K., Skrinska, A. (2002). Transient heat conduction process in the multilayer wall under the influence of solar radiation. Improving human potential program, 179–185.

    3. Kavetskiy, G. D., Kasyanenko, V. P. (2008). Protsessy i apparaty pishchevoy tekhnologii, 591.

    4. Realnaya struktura tverdogo tela (2006). Available at: http://www.fnm.msu.ru/documents/15real15.pdf (Last accessed: 12.07.2014).

    5. Dytnerskiy, Yu. I. (1995). Protsessy i apparaty khimicheskoy tekhnologii, 1, 2.

    6. Kostrova, G. V., Saveleva, O. S., Stanovskiy, O. L. (2011). Obladnannya naftogazovoi ta khіmіchnoi galuzі, 145.

    7. Levin, G. G., Vishnyakov, G. N. (1989). Opticheskaya tomografiya, 224.

    8. Natterer, F. (1990). Matematicheskiye aspekty kompyuternoy tomografii, 288.

    9. Canny, J. (1986). A Computational Approach to Edge Detection. Transactions on pattern analysis and machine intelligence, IEEE, 6, 679–698.

    10. Aizenberg, I., Butakoff, C. (2002). Image Processing Using Cellular Neural Networks Based on Multi-Valued and Universal Binary Neurons. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 32, 169–188.

    11. Feder, Ye. (1991). Fraktaly, 254.

    12. Nomoyev, A. V., Vikulina, L. S. (2012). Fraktalnaya razmernost granits zeren keramiki s nanodispersnymi dobavkami. Zhurnal tekhnicheskoy fiziki, 82 (12), 139–142.

    13. Bozhokin, S. V., Parshin, D. A. (2001). Fraktaly i multifraktaly. NITs «Regulyarnaya i khaoticheskaya dinamika», 128.

    14. Izmerov, M. A. (2006). Metody opredeleniya fraktalnoy razmernosti inzhenernykh poverkhnostey. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 3 (11), 10–19.

    15. Mandelbrot, B. (2002). Fraktalnaya geometriya prirody, 656.

    16. Lauwerier, H. A., Kaandorp, J. A. (1987). Fractals (Mathematics, Programming and Applications). Report CS-R8762, 1–33.

    17. Lin, H., Venetsanopoulos, A. N. (1996). Fast pyramidal search for perceptually based fractal image compression. Department of Electrical and Computer Engineering, 1–4. doi: http://dx.doi.org/10.1109/icip.1996.559461

    18. Fisher, Y., Prusinkiewicz, P. (1992). Fractal image compression. SIGGRAPH’92 Course Notes: From Folk Art to Hyperreality, 1–21.

    19. Vostrov, G. N., Abu Ayash, T. A. (2001). Printsip szhimayushchikh otobrazheniy i ego primeneniye dlya fraktalnogo szhatiya izobrazheniy. Trudy Odesskogo politekhnicheskogo universiteta, 2 (14), 96–99.

    20. Kronover, P. M. (2000). Fraktaly i khaos v dinamicheskikh sistemakh, 198.

    21. Kolmogorov, A. N., Fomin, S. V. (1989). Elementy teorii funktsiy i funktsionalnogo analiza, 267.

    22. Vostrov, G. M., Abu Ayash, T. A., Stanovskiy, P. O. (2005). Do pitannya pro fraktalne koduvannya vіdeopotokіv. Naukovі notatki. Mіzhvuzіvskiy zbіrnik, 17, 41–48.

    23. Tonkonogiy, V. M., Stanovskiy, P. A. (2005). Videoobrabotka izobrazheniy v sisteme avtomaticheskogo izmereniya defektnosti iznosostoykikh pokrytiy na rezhushchem instrumente. Trudy Odesskogo politekhnicheskogo universiteta, 1 (23), 112–115.

    24. Stanovskiy, P. O., Malakhov, E. V., Arsіrіy, O. O. (2007). Rozrobka metodu fraktalnogo koduvannya-dekoduvannya vіdeopotokіv. Trudy Odesskogo politekhnicheskogo universiteta, 2 (28), 113–116.

    25. Laptev, A. G., Farahov, M. I., Mineev, N. G. (2010). Osnovy rascheta i modernizatsiya teplomassoobmennyh ustanovok v neftekhimii, 574.

    26. Laptev, A. G., Nikolaev, N. A., Basharov, M. M. (2011). Metody intensifikatsii i modelirovanie teplomassoobmennyh protsessov, 335.

    27. Skoblo, A. I., Molokanov, Yu. K., Vladimirov, A. I., Shchelkunov, V. A. (2000). Protsessy i apparaty neftegazopererabotki i neftekhimii, 677.

Published

2014-10-21

How to Cite

Становский, А. Л., Савельева, О. С., Прокопович, И. В., Торопенко, А. В., & Духанина, М. А. (2014). Development of heat-mass exchange optimization methods using fractal convolutions of computer tomograms. Eastern-European Journal of Enterprise Technologies, 5(5(71), 4–9. https://doi.org/10.15587/1729-4061.2014.27978