Investigation of the surface layer of dimethyl ether/triethylene glycol solutions

Authors

  • Виталий Петрович Железный Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039, Ukraine
  • Татьяна Дмитриевна Севастьянова Odessa national academy of food technologies 1/3 Dvoryanskaya St., Odessa, Ukraine, 65082, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.27986

Keywords:

gradient theory, single-fluid approximation, density profile, effective composition of surface layer

Abstract

Method for calculating density and concentrations profiles of dimethyl ether (DME) solutions in triethylene glycol (TEG) was proposed in the paper. The thickness values of the surface layer of solutions were determined, and its structure was studied. The method for determining the effective surface concentration of the solution was proposed. The studies were performed in the framework of the gradient theory using the Peng-Robinson equation of state in single-fluid approximation with a modified procedure for determining the SE coefficients.

The studies were conducted in order to determine the effective composition of the surface layer of the solution. It is this solution composition rather than of the bulk liquid phase composition that must be taken into account when interpreting the experimental data on the saturated vapor pressure and surface tension of solutions.

As a result, it was found that the effective thickness of the surface layer of the solution increases with a decrease in the DME amount in solution, and as approaching the critical temperature tends to infinity. Herewith, surface layer of the studied solutions is composed of two sublayers. DME partial molar density profiles have a maximum. This means that the surface layer of the solution is enriched with this component. Analysis of the results has shown that the difference between the component concentrations in the surface layer and in the bulk liquid phase of the solution increases with temperature. The results are of fundamental importance in both the experimental investigation of the solution properties, and thermodynamic modeling of phase equilibria of solutions and forecasting their surface tension.

Author Biographies

Виталий Петрович Железный, Odessa National Academy of Food Technologies Kanatna 112, Odessa, Ukraine, 65039

Professor

Department of Thermophysics and Applied Ecology

Татьяна Дмитриевна Севастьянова, Odessa national academy of food technologies 1/3 Dvoryanskaya St., Odessa, Ukraine, 65082

PhD student

The department of thermal physics and applied ecology

References

  1. Rowlinson, J. S., Widom, B. (1984). Molecular Theory of Capillarity. Clarendon Press, 252.

    Pugachevich, P. P., Beglyarov, E. M., Lavygin, I. A. (1982). Poverkhnostnyye yavleniya v polimerakh. Moscow: Khimiya, 200.

    Adamson, А. (1979). Fizicheskaya khimiya poverkhnosti. Moscow: Mir, 567.

    Cahn, J. W., Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 28 (2), 258–267. doi: 10.1063/1.1744102

    Macleod, D. B. (1923). Relation between surface tension and density. Trans. Farad. Soc., 19, 38. doi: 10.1039/ TF9231900038

    Skripov, V. P., Sinitsyn, Ye. N., Pavlov, P. A., Yermakov, G. V. (1980). Teplofizicheskiye svoystva zhidkostey v metastabil'nom sostoyanii / Spravochnik. Moscow: Atomizdat, 280.

    Toxvaerd, S. (1972). Surface structure of a square–well fluid. J. Chem. Phys, 57 (10), 4092–4097. doi: 10.1063/1.1678031

    Paul, S., Chandra, A. (2007). Structure, dynamics and the free energy of solute adsorption at liquid–vapor interfaces of simple dipolar systems: Molecular dynamics results for pure and mixed Stockmayer fluids. The Journal of Physical Chem. B 111, 12500–12507. doi: 10.1021/jp075240g

    Teixeira, P. I., Telo da Gama, M. M. (1991). Density functional theory for the interfacial properties of a dipolar fluid. J. Phys.: Condens. Matter, 3 (1), 111–125. doi:10.1088/0953-8984/3/1/009

    Van der Waals, J. D., Kohnstamm, Ph. (1908). Lehrbuch der Thermodynamik. Maas and van Suchtelen. Leipzig, 1, 207.

    Shestova, T. D., Lozovsky, T. L., Zhelezny, V. P. (2014). Modifying gradient theory to predict the surface properties of halogenated hydrocarbons. Russian J. of Phys. Chem. A., 88 (5), 851–857. doi: 10.1134/S0036024414050288

    Zhelezny, V. P., Semenyuk, Y. U., Lozovsky, T. L., Ivchenko, D. A. (2011). Application of scaling principles for prediction of pseudo–critical parameters of refrigerant/oil solutions. Proc. 23rd IIR International Congress of Refrigeration. Pap.

    Shestova, T. D., Markvart, A. S., Lozovsky, T. L., Zhelezny, V. P. (2013). Cubical equations of state for predicting the phase equilibria of poorly studied substances. Russian J. of Phys. Chem. A., 87 (6), 883–889. doi: 10.1134/S0036024413060253

    Ivchenko, D. A., Semenyuk, Yu. V., Zhelezny, V. P. (2011). Eksperimental'noye issledovaniye termodinamicheskikh svoystv rastvorov demetilovogo efira (DME) s trietilenglikolem (TEG). Kholodil'na tekhníka í tekhnologíí, 4 (132), 25–30.

    Zhelezny, P. V., Procenko, D. A., Zhelezny, V. P., Ancherbak, S. N. (2007). An experimental investigation and modelling of the thermodynamic properties of isobutane–compressor oil solutions: Some aspects of experimental methodology. Int. J. Refrig., 30 (3), 433–445. doi: 10.1016/ j.ijrefrig.2006.09.007

    Nino–Amezquita, O. G., Enders, S., Jaeger, Philip T., Eggers, R. (2010). Measurement and Prediction of Interfacial Tension of Binary Mixtures. Ind. Eng. Chem. Res., 49 (2), 592–601. doi: 10.1021/ie901209z

    Morachevskiy, A. G., Sladkov, I. B. (1996). Fiziko–khimicheskiye svoystva molekulyarnykh neorganicheskikh soyedineniy (eksperimental'nyye dannyye i metody rascheta): Sprav. izd. 2–ye izd., Pererab. i dop. SPb.: Khimiya, 312.

    Lemmon, E. W., Huber, Marcia L., McLinden, M. O. (2002). NIST reference fluid thermodynamic and transport properties–REFPROP. Gaithersburg: National Institute of Standard and Technology.

    Lekner, J., Henderson, J. (1978). Theoretical determination of the thickness of a liquid–vapour interface. Physica A: Statistical Mechanics and its Applications, 94 (3-4), 545–558. doi: 10.1016/0378-4371(78)90086-9

    Telo da Gama, M. M., Evans, R. (1983). The structure and surface–tension of the liquid vapor interface near the upper critical endpoint of a binary mixture of Lennard–Jones fluids.1. the 2 phase region. Molecular Physics, 48 (2), 229–250. doi: 10.1080/00268978300100181

    Mejı´a, A., Segura, H., Cartes, M., Ricardo Pérez–Correa, J. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane + tetrahydro–2H–pyran, Fluid Phase Equilibria, 316, 55–56. doi: 10.1016/j.fluid.2011.12.007

    Semenyuk, Yu., Zhelezny, V., Ivchenko, D., Geller, V. (2011). Refrigerant/Lubricant Mixtures: Problems of Application and Property Research. Proc. 23rd IIR International Congress of Refrigeration.

    Lozovskiy, T. L., Semenyuk, Yu. V., Ivchenko, D. A., Prikhodchenko, N. A. (2009). Poverkhnostnoye natyazheniye smesevykh khladagentov i rastvorov khladagent/maslo. Eksperiment metody prognozirovaniya. Chast' 3: Poverkhnostnoye natyazheniye rastvorov khladagent/maslo. Kholodil'na tekhníka í tekhnologíya, 6 (122), 38–46.

    Ghasemian, E. (2013). Prediction of surface tension and surface properties of organic binary mixtures. Journal of Molecular Liquids, 183, 64–71. doi:10.1016/j.molliq.2013.04.006

Published

2014-10-13

How to Cite

Железный, В. П., & Севастьянова, Т. Д. (2014). Investigation of the surface layer of dimethyl ether/triethylene glycol solutions. Eastern-European Journal of Enterprise Technologies, 5(6(71), 56–62. https://doi.org/10.15587/1729-4061.2014.27986

Issue

Section

Technology organic and inorganic substances