Designing engobe coatings for ceramic bricks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.279918

Keywords:

engobe, rheological properties, ceramic brick, thermal expansion, crystal phase, shrinkage

Abstract

This paper reports research into the development of compositions of engobe coatings for ceramic bricks and investigating the influence of technological production factors on their physical and mechanical properties. The results of this work make it possible to solve the task of expanding the range and improving the operational properties of building ceramics.

The data obtained have made it possible to establish physicochemical processes occurring during the formation of the phase composition and structure of engobe coatings. This has revealed the possibilities for designing engobe for various types of ceramic bricks, which differ in technological parameters of production and operational properties.

The charge compositions were designed in a three-component system "refractory clay – quartz sand – cullet", taking into account the possibility of their practical implementation in large-tonnage production. It has been established that the most important condition for obtaining high-quality products is the correlation of shrinkage and temperature coefficients of linear expansion of the ceramic shard and engobe coating. To prevent various defects, these indicators should vary by no more than 10 %.

The crystal-phase composition of engobe is represented by b-quartz and a small amount of devitrite, which are evenly distributed in a vitreous dense layer of coating on the surface of the ceramic shard.

Distinctive features of the results relate to the fact that a solution to the problem of designing engobe coatings for ceramic bricks has been proposed and the physicochemical bases of production have been highlighted. This paper also suggests ways to achieve coordination of finely dispersed coatings with coarse-grained ceramic masses by shrinkage and thermal processes.

The results reported here could be applied in typical production of face, clinker, and in some cases – ordinary brick or ceramic stone with firing temperatures of 950–1150 °C

Author Biographies

Olena Khomenko, Ukrainian State University of Chemical Engineering

PhD, Associate Professor

Department of Chemical Technology of Ceramics, Glass аnd Building Materials

Liudmyla Tsyhanenko, Sumy National Agrarian University

PhD, Associate Professor

Department of Engineering Constructions

Hennadii Tsyhanenko, Sumy National Agrarian University

Senior Lecturer

Department of Engineering Constructions

Artem Borodai, Sumy National Agrarian University

PhD, Associate Professor

Department of Architecture and Surveying Engineering

Dmytro Borodai, Sumy National Agrarian University

PhD, Associate Professor

Department of Architecture and Surveying Engineering

Serhii Borodai, Limited Liability Company “ARS-Design”

Chief Project Architect

References

  1. Muneron, L. M., Hammad, A. W., Najjar, M. K., Haddad, A., Vazquez, E. G. (2021). Comparison of the environmental performance of ceramic brick and concrete blocks in the vertical seals' subsystem in residential buildings using life cycle assessment. Cleaner Engineering and Technology, 5, 100243. doi: https://doi.org/10.1016/j.clet.2021.100243
  2. Khomenko, О. S., Datsenko, B. M., Fomenko, G. V. (2022). Determination of approaches to the development of ceramic compositions for the manufacture of facial bricks. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 98–107. doi: https://doi.org/10.32434/0321-4095-2022-145-6-98-107
  3. Pavlova, I. A., Sapozhnikova, M., Farafontova, E. P. (2020). The Effect of Manganese-Containing Pigment on the Strength of Ceramic Bricks. Materials Science Forum, 989, 329–334. doi: https://doi.org/10.4028/www.scientific.net/msf.989.329
  4. Khomenko, O., Datsenko, B., Sribniak, N., Nahornyi, M., Tsyhanenko, L. (2019). Development of engobe coatings based on alkaline kaolins. Eastern-European Journal of Enterprise Technologies, 6 (6 (102)), 49–56. doi: https://doi.org/10.15587/1729-4061.2019.188126
  5. Mangone, A., Caggiani, M. C., Giannossa, L. C., Eramo, G., Redavid, V., Laviano, R. (2013). Diversified production of red figured pottery in Apulia (Southern Italy) in the late period. Journal of Cultural Heritage, 14 (1), 82–88. doi: https://doi.org/10.1016/j.culher.2012.03.011
  6. Dal Bó, M., Bernardin, A. M., Hotza, D. (2014). Formulation of ceramic engobes with recycled glass using mixture design. Journal of Cleaner Production, 69, 243–249. doi: https://doi.org/10.1016/j.jclepro.2014.01.088
  7. Jaramillo Nieves, L. J., Nastri, S., Lot, A. V., Melchiades, F. G., Marsola, G. A., Flauzino, I. S. et al. (2022). Influence of engobe and glaze layers on the evolution of porosity and permeability of single-fired porcelain tiles. Applied Clay Science, 228, 106635. doi: https://doi.org/10.1016/j.clay.2022.106635
  8. Kavanova, M., Kloužková, A., Kloužek, J. (2017). Characterization of the interaction between glazes and ceramic bodies. Ceramics – Silikaty, 61 (1), 267–275. doi: https://doi.org/10.13168/cs.2017.0025
  9. Nandi, V. S., Raupp-Pereira, F., Montedo, O. R. K., Oliveira, A. P. N. (2015). The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. Journal of Cleaner Production, 86, 461–470. doi: https://doi.org/10.1016/j.jclepro.2014.08.091
  10. Tarhan, M., Tarhan, B. (2019). Development of waterproof engobe layer for ceramic wall tiles. Journal of Thermal Analysis and Calorimetry, 140 (2), 555–565. doi: https://doi.org/10.1007/s10973-019-08893-3
  11. Samoilenko, N., Shchukina, L., Baranova, A. (2019). Development of engobe composition with the use of pharmaceutical glass waste for glazed ceramic granite. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.175922
  12. Koleda, V. V., Mikhailyuta, E. S., Alekseev, E. V., Tsybul’ko, É. S. (2009). Technological particularities of clinker brick production. Glass and Ceramics, 66 (3-4), 132–135. doi: https://doi.org/10.1007/s10717-009-9129-3
  13. Subashi De Silva, G. H. M. J., Hansamali, E. (2019). Eco-friendly fired clay bricks incorporated with porcelain ceramic sludge. Construction and Building Materials, 228, 116754. doi: https://doi.org/10.1016/j.conbuildmat.2019.116754
  14. Benahsina, A., El Haloui, Y., Taha, Y., Elomari, M., Bennouna, M. A. (2022). Substitution of natural clay by Moroccan solid mining wastes to manufacture fired bricks. Materials Today: Proceedings, 58, 1324–1330. doi: https://doi.org/10.1016/j.matpr.2022.02.211
  15. Luangnaem, C., Sathonsaowaphak, A., Kamon-In, O., Pimraksa, K. (2014). Development of Engobe Samples for Dan Kwian Ceramic Body. Key Engineering Materials, 608, 325–330. doi: https://doi.org/10.4028/www.scientific.net/kem.608.325
  16. Johnson, L. A., McCauley, R. A. (2005). The thermal behavior of albite as observed by DTA. Thermochimica Acta, 437 (1-2), 134–139. doi: https://doi.org/10.1016/j.tca.2005.06.039
  17. Governatori, M., Cedillo-González, E.I., Manfredini, T., Siligardi, C. (2022). Solar reflective properties of porcelain tiles for UHI mitigation: effect of highly reflective frits in the engobe's formulation. Materials Today Sustainability, 20, 100255. doi: https://doi.org/10.1016/j.mtsust.2022.100255
  18. Ferrari, C., Muscio, A., Siligardi, C. (2016). Development of a Solar-reflective Ceramic Tile Ready for Industrialization. Procedia Engineering, 169, 400–407. doi: https://doi.org/10.1016/j.proeng.2016.10.049
  19. Zorigt, S., Jadamba, Ts., Tsevel, S. (2012). Synthesis and structural studies of face engobe layer's mass. Proceedings 7th International Forum on Strategic Technology, IFOST. doi: https://doi.org/10.1109/ifost.2012.6357603
  20. Yatsenko, N. D., Rat’kova, É. O. (2009). Engobes for ceramic brick. Glass and Ceramics, 66 (3-4), 93–94. doi: https://doi.org/10.1007/s10717-009-9144-4
  21. Janus, M., Zając, K. (2019). Self-cleaning efficiency of nanoparticles applied on facade bricks. Nanotechnology in Eco-Efficient Construction, 591–618. doi: https://doi.org/10.1016/b978-0-08-102641-0.00024-4
  22. Becker, E., Jiusti, J., Minatto, F. D., Delavi, D. G. G., Montedo, O. R. K., Noni Jr., A. de. (2017). Use of mechanically-activated kaolin to replace ball clay in engobe for a ceramic tile. Cerâmica, 63 (367), 295–302. doi: https://doi.org/10.1590/0366-69132017633672077
  23. Bernasconi, A., Diella, V., Pagani, A., Pavese, A., Francescon, F., Young, K. et al. (2011). The role of firing temperature, firing time and quartz grain size on phase-formation, thermal dilatation and water absorption in sanitary-ware vitreous bodies. Journal of the European Ceramic Society, 31 (8), 1353–1360. doi: https://doi.org/10.1016/j.jeurceramsoc.2011.02.006
  24. Gültekin, E. E., Topateş, G., Kurama, S. (2017). The effects of sintering temperature on phase and pore evolution in porcelain tiles. Ceramics International, 43 (14), 11511–11515. doi: https://doi.org/10.1016/j.ceramint.2017.06.024
  25. Shaikh, S. M. R., Nasser, M. S., Hussein, I., Benamor, A., Onaizi, S. A., Qiblawey, H. (2017). Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Separation and Purification Technology, 187, 137–161. doi: https://doi.org/10.1016/j.seppur.2017.06.050
  26. Khomenko, O. S. (2018). Choice of ceramic masses for the manufacture of electrical ceramics. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–95. Available at: http://vhht.dp.ua/wp-content/uploads/pdf/2018/1/Khomenko.pdf
  27. Kavanova, M., Kloužková, A., Kloužek, J. (2017). Characterization of the interaction between glazes and ceramic bodies. Ceramics – Silikaty, 61 (1), 267–275. doi: https://doi.org/10.13168/cs.2017.0025
  28. Venturelli, C., Paganelli, M. (2006). Thermo-mechanical behaviour of technical ceramic bricks, felt boards and fibres. CFI Ceramic Forum International, 83, 4, E18–E22. Available at: https://www.expertlabservice.it/en/publication/thermo-mechanical-behaviour-of-technical-ceramic-bricks-felt-boards-and-fibres/
  29. Goncalves, R. A., Dal-Pont, G., Werneke, A. S. W. Riella, H. G., Mamede, W. F. (2000). Determination of mohs hardness of glazed tiles by scratching tests. Ceramic Technology Center, 67–71. Available at: https://www.qualicer.org/recopilatorio/ponencias/pdfs/0032170e.pdf
  30. Li, J., Lin, H., Li, J., Wu, J. (2009). Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite. Journal of the European Ceramic Society, 29 (14), 2929–2936. doi: https://doi.org/10.1016/j.jeurceramsoc.2009.04.032
  31. Kazmina, O. V., Tokareva, A. Y., Vereshchagin, V. I. (2016). Using quartzofeldspathic waste to obtain foamed glass material. Resource-Efficient Technologies, 2 (1), 23–29. doi: https://doi.org/10.1016/j.reffit.2016.05.001
Designing engobe coatings for ceramic bricks

Downloads

Published

2023-06-30

How to Cite

Khomenko, O., Tsyhanenko, L., Tsyhanenko, H., Borodai, A., Borodai, D., & Borodai, S. (2023). Designing engobe coatings for ceramic bricks. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 77–87. https://doi.org/10.15587/1729-4061.2023.279918

Issue

Section

Technology organic and inorganic substances