Adsorption and barrier properties of yaziv mine bentonite as material for landfill liners

Authors

  • Маріанна Анатоліївна Петрова Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000, Ukraine
  • Марія Олександрівна Постнікова Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000, https://orcid.org/0000-0002-2403-8420
  • Катерина Вікторівна Степова Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000, Ukraine https://orcid.org/0000-0002-2082-9524

DOI:

https://doi.org/10.15587/1729-4061.2014.28004

Keywords:

adsorption, desorption, bentonite, filtrate, migration, copper, ammonium, waste, landfills, dumps

Abstract

The properties of natural bentonite clay of Yaziv mine (Lviv region., Ukraine) as a material for landfill liners and solid household and industrial waste storages were investigated. Copper and ammonium were selected as components that imitate the filtrate composition. Filtration coefficient, which is 10.9 m/s was  experimentally found. Based on the porosity analysis, it was determined that the mineral belongs to the microporous materials with an average pore radius of 5Å. It was revealed that bentonite is able to irreversibly absorb large amounts of copper by the ion exchange mechanism. The full capacity of the mineral by copper is 115 mg/g. Ammonium adsorption proceeds according to the physical adsorption mechanism; maximum adsorption capacity is 0.175 mg/g. Saturation of the adsorbent is reached on the first day due to the high specific surface area. Remobilization ability of components when applying different desorbing agents was examined. The data obtained suggest that the adsorption ability of bentonite clay liners is not enough to ensure the environmental safety of ground and surface waters. Barriers, made of several materials with low permeability, different porosity, specific surface area and high adsorption ability of the filtrate components must be used.

Author Biographies

Маріанна Анатоліївна Петрова, Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000

Candidate of Science (Technical)

Department of Environmental Safety

Марія Олександрівна Постнікова, Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000

Master

Department of Environmental Safety

Катерина Вікторівна Степова, Lviv State University of Life Safety 35 Kleparivska Str. Lviv, Ukraine, 79000

Candidate of Science (Technical)

Department of Environmental Safety

References

  1. 1. Thompson, T. P. (2007). Chemical safety of drinking-water: Assessing priorities for risk assessment. Geneva: World Health Organization. Available at: http://whqlibdoc.who.int/publications/2007/9789241546768_eng.pdf

    2. Kreith, F., Tchobanoglous, G. (Ed.) (2002). Handbook of solid waste management. New York: McGraw-Hill, 950.

    3. Godovska, T. B., Feshchenko, V. P. (2010). Ecological and economical analysis of solid waste management on the example of Zhytomyr region. Transactions ofZhutomyrskiiNationalAgroecologicalUniversity, 2, 220–227.

    4. Nikolaiev, A. M. (2014). The impact of municipal solid waste of Chernivtsi on ground and surface waters, soils and bottom sediments of water courses. Scientific Transactions of Chernivtsi University: Collected Works, 10 (2), 664–667.

    5. Voloshyn, P. (2014). Analysis of Lviv landfill impact on the environment. Transactions ofLvivUniversity. Geological Series, 26, 139–147.

    6. Kiselev, N. N., Filatov, V. F., Dubrova, N. A., Kvashuk, O. Yu. (2008). Survey of contamination process on industrial landfills of Horlovka chemical plant. Scientific works of UkrNDMI NAN, 2, 199–210.

    7. Yeroshyna, D. M., Khodin, V. V., Zybrickii, V. S., Demidov, A. L. (2010). Environmental aspects of municipal solid waste disposal on landfills. Minsk: BelNITS “Ecology”, 152.

    8. Koch, D. (2002). Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Applied Clay Science, 21 (1-2), 1–11. doi: 10.1016/S0169-1317(01)00087-4

    9. Golubev, V. S., Harbiiants, A. A. (1968). Heterogeneous processes of geochemical migration. Moscow: Nedra, 192.

    10. Voronkova, T. V. (2009). Improvement of an impervious barrier for pollutants emission reduction of municipal solid waste landfills. Perm Polytechnic University, Perm, Russian Federation, 17.

    11. Varank, G., Demir, A., Top, S., Sekman, E., Akkaya, E., Yetilmezsoy, K, Bilgili, M. S. (2011). Migration behavior of landfill leachate contaminants through alternative composite liners. Science of the Total Environment, 409 (17), 3183–3196. doi: 10.1016/j.scitotenv.2011.04.044

    12. Kononenko, L. V., Manicev, V. I., Koliabina, I. L., Koromyslichenko, T. I. (2010). Sorption kinetics of cesium–137 and strontium–90 by clay. Journal of Mineralogy, 32 (3), 88–95.

    13. Bergaya, F., Theng, B. K. G., Lagaly, G. (2006). Handbook of clay science. Amsterdam: Elsevier, 1224. doi: 10.1016/B978-0-08-098259-5.00023-8.

    14. Guney, Y., Cetin, Y. B., Aydilek, A. H. (2013). Utilization of sepiolite materials as a bottom liner material in solid waste landfills. Waste Management, 34 (1), 112–124. doi: 10.1016/j.wasman.2013.10.008

    15. Kaya, A., Durukan, S. (2004). Utilization of bentonite-embedded zeolite as clay liner. Applied Clay Science, 25 (1-2), 83-91. doi: 10.1016/j.clay.2003.07.002

    16. Kruempelbeck, J. G. (1999). Long-term behaviour of municipal solid waste landfills inGermany. Proceedings of Sardinia 99, Seventh International Waste Management and Landfill Symposium, 1, 27–36. doi: 10.1002/bate.199904440

    17. Petrova, M. A. (2011). Decontamination of radioactive liquid waste containing cesium -137 and strontium -90 modified clay sorbents. National Technical University “Kyiv Polytechnic Institute”, Kyiv, Ukraine, 20.

    18. Webster, C. E., Drago, R. S., Zerner, M. C. (1999). A method for characterizing effective pore sizes of catalysts. Journal of Physical Chemistry, 103 (8), 1242–1249. doi: 10.1021/jp984055n

    19. Tan, W. T., Yien Ting, A. S. (2014). Alginate-immobilized bentonite clay: Adsorption efficacy and reusability for Cu(II) removal from aqueous solution. Bioresource Technology, 160, 115–118. doi: 10.1016/j.biortech.2013.12.056

    20. Pivato, А., Raga, R. (2006). Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner. Waste Management, 26 (2), 123–132. doi: 10.1016/j.wasman.2005.03.009

    21. Alshameri, A., Chunjie, Ya., Yasir, Al-An. (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45 (5), 554–564. doi: 10.1016/j.jtice.2013.05.008

    22. Arslan, A., Veli, S. (2012). Zeolite 13X for adsorption of ammonium ions from aqueous solutions and hen slaughterhouse wastewaters. Journal of the Taiwan Institute of Chemical Engineers, 43, 393–398. doi: 10.1016/j.jtice.2011.11.003

Published

2014-10-15

How to Cite

Петрова, М. А., Постнікова, М. О., & Степова, К. В. (2014). Adsorption and barrier properties of yaziv mine bentonite as material for landfill liners. Eastern-European Journal of Enterprise Technologies, 5(10(71), 36–41. https://doi.org/10.15587/1729-4061.2014.28004