Development of the solution search method using the population algorithm of global search optimization

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.281007

Keywords:

hybrid actions, artificial neural networks, bio-inspired algorithms, use of forces (troops) of the Naval Forces

Abstract

The research objects are decision making support systems. subject research is a decision making process in management tasks using bio-inspired algorithms. A method of finding solutions using the population algorithm of global search optimization is proposed. Joint use of invasive weed algorithm is proposed, genetic algorithm and evolving artificial neural networks are improved. The method has the following sequence of actions:

‒ an input of initial data;

‒ processing of initial data taking into account the degree of uncertainty;

‒ formation of the optimization vector;

‒ creation of descendant vectors;

‒ ordering of vectors in descending order;

‒ reducing the dimensionality of the feature space;

‒ teaching knowledge bases.

The peculiarity of the proposed method lies in the placement of agents-weeds, taking into account the uncertainty of the initial data, improved procedures for reducing the space of signs about the analysis object state.

Training of synaptic weights of an artificial neural network, type and parameters of the membership function and the architecture of individual elements, and the architecture of an artificial neural network as a whole is carried out. The proposed method was simulated in the MathСad 14 software environment. The task to be solved during the simulation was to determine the route of the ships in the operational zones of the Black and Azov seas in the conditions of hybrid actions of the enemy. The use of the method makes it possible to increase the efficiency of data processing at the level of 21–27 % due to the use of additional improved procedures. The proposed method should be used to solve the problems of evaluating complex and dynamic processes in the interests of solving national security problems

Author Biographies

Stepan Yakymiak, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD, Assosite Professor, Head

Department of Navy

Yevhenii Vdovytskyi, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

Adjunct

The Scientific and Methodological Center of Scientific, Scientific and Technical Activities Organization

Yurii Artabaiev, Research Center for Trophy and Perspective Weapons and Military Equipment

PhD, Head of Department

Research Department of Combat Crews

Larisa Degtyareva, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Yuliia Vakulenko, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Serhii Nevhad, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD, Chief

Language Testing and Research Centre

Vitalii Andronov, Scientific-Research Institute of Military Intelligence

PhD, Head of Department

Roman Lazuta, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Head of Scientific Research Department

The Scientific Center for Communication and Informatization

Petro Shapoval, Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD

Head

Scientific-Research Laboratory

Yevhen Artamonov, National Aviation University

PhD, Associate Professor

Department of Computerized Control Systems

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583‒5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (05), 37‒44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eyssner, Yu. N. (2017). Modelirovanie stsenariev razvitiya ekonomicheskoy situatsii na osnove nechetkikh kognitivnykh kart. Sovremennaya Ekonomika: Problemy i Resheniya, 10, 33–47. doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemnyy analiz, upravlenie i obrabotka informatsii, 13, 31‒35.
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. A Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-XL-2-W1-59-2013
  20. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/S0020-7373(86)80040-2
  21. Gorelova, G. V. (2013). Kognitivnyy podkhod k imitatsionnomu modelirovaniyu slozhnykh sistem. Izvestiya YuFU. Tekhnicheskie nauki, 3, 239–250.
  22. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.268621
  23. Rad, H. S., Lucas, C. (2007). A recommender system based on invasive weed optimization algorithm. 2007 IEEE Congress on Evolutionary Computation. doi: https://doi.org/10.1109/cec.2007.4425032
  24. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  25. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  26. Emel'yanov, V. V., Kureychik, V. V., Kureychik, V. M., Emel'yanov, V. V. (2003). Teoriya i praktika evolyutsionnogo modelirovaniya. Moscow: Fizmatlit, 432.
  27. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  28. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  29. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  30. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  31. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16
  32. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292
  33. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  34. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. doi: https://doi.org/10.15587/1729-4061.2018.126578
  35. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. doi: https://doi.org/10.15587/1729-4061.2017.96321
  36. Lovska, A. A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_1/10%20Lovska.pdf
  37. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: https://doi.org/10.14311/ap.2020.60.0478
  38. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. doi: https://doi.org/10.15587/1729-4061.2022.266009
  39. Syrotenko, A. M. (Red.) (2020). Voienni aspekty protydiyi “hibrydniy ahresiyi”: dosvid Ukrainy. Kyiv: NUOU imeni Ivana Cherniakhovskoho, 176. Available at: https://nuou.org.ua/assets/monography/mono_gibr_viin.pdf
  40. Yakymiak, S. (2021). Hybrid warfare in the Black Sea: lessons learned and training improvement. Current issues of military specialists training in the security and defence sector under conditions of hybrid threats. Warszawa: Wydawnictwo Instytutu Bezpieczeństwa I Rozwoju Międzynarodowego, 396–405. Available at: https://www.academia.edu/47706282/CURRENT_ISSUES_OF_MILITARY_SPECIALISTS_TRAINING_IN_THE_SECURITY_AND_DEFENCE_SECTOR_UNDER_CONDITIONS_OF_HYBRID_THREATS
  41. Yakimyak, S., Vdovitsky, E. (2021). Analysis of factors that may affect on the effectiveness of use the Navy duties during the protection of the economic activities of the state at sea in the context of hybrid enemy actions. Збірник Наукових Prats Tsentru Voienno-Stratehichnykh Doslidzhen NUOU Imeni Ivana Cherniakhovskoho, 1 (71), 75–81.doi: https://doi.org/10.33099/2304-2745/2021-1-71/75-81
  42. Vdovytskyi, Ye. A. (2022). Analiz isnuiuchoho naukovo-metodychnoho aparatu otsiniuvannia efektyvnosti zastosuvannia syl (viysk) VMS pid chas vykonannia zavdan zakhystu ekonomichnoi diyalnosti derzhavy na mori v umovakh hibrydnykh diy protyvnyka. Trudy universytetu, 3 (172), 202–208.
Development of the solution search method using the population algorithm of global search optimization

Downloads

Published

2023-06-30

How to Cite

Yakymiak, S., Vdovytskyi, Y., Artabaiev, Y., Degtyareva, L., Vakulenko, Y., Nevhad, S., Andronov, V., Lazuta, R., Shapoval, P., & Artamonov, Y. (2023). Development of the solution search method using the population algorithm of global search optimization. Eastern-European Journal of Enterprise Technologies, 3(4 (123), 39–46. https://doi.org/10.15587/1729-4061.2023.281007

Issue

Section

Mathematics and Cybernetics - applied aspects