Improving the efficiency of dynamic analysis of the combined simulation model for software with parallelism

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.283075

Keywords:

software with parallelism, Petri nets, critical properties, synthesis of software model, dynamic analysis

Abstract

Software design uses the set of tools for building and analyzing models which do not allow solving the complex problem of improving the quality of design solutions. This task includes not only the synthesis of the software model with parallelism, the detection and localization of errors for the correction of the model, but also the visual analysis of the model for the synthesis of new or corrected design solutions. The study object is the building and analyzing processes of software models with parallelism.

Techniques and a method‘s of synthesis and analysis of the software model with parallelism are proposed, which are based on the combined approach to simulation modelling of the systems with parallelism. The analysis of the software model with parallelism begins at the stage of creating and static analyzing component models. The proposed method provides dynamic analysis of component models and partial model in the process of assembling the complete software model.

Building of component models is carried out based on the rules for building PN-models, PN-templates and the principle of structural similarity, while their static properties are checked. The dynamic analysis of the component models of software is carried out using simulation modeling and the method of invariants. In process of the model assembling, the complete model is gradually formed by assembling it from the models of software components, and its dynamic properties are analyzed. In this case, the convolution method, the method of invariants, and simulation modelling are used.

Through in-depth dynamic analysis the presented method‘s provides an opportunity to check the static and dynamic properties of the studied models, which ensures an increase in the quality of project solutions at the software design stage. It can be used to reduce the cost of software development, as well as to analyze the developed software to improve the efficiency of support

Author Biographies

Oksana Suprunenko, The Bohdan Khmelnytsky National University of Cherkasy

PhD, Associate Professor

Department of Software for Automated Systems

Borys Onyshchenko, The Bohdan Khmelnytsky National University of Cherkasy

PhD, Associate Professor

Department of Software for Automated Systems

Julia Grebenovich, The Bohdan Khmelnytsky National University of Cherkasy

Senior Lecturer

Department of Software for Automated Systems

References

  1. Shakhovska, N., Yakovyna, V. (2021). Feature Selection and Software Defect Prediction by Different Ensemble Classifiers. Database and Expert Systems Applications, 307–313. doi: https://doi.org/10.1007/978-3-030-86472-9_28
  2. Suprunenko, O. O., Onyshchenko, B. O., Grebenovych, J. E. (2022). Analysis of Hidden Errors in the Models of Software Systems Based on Petri Nets. Èlektronnoe Modelirovanie, 44 (2), 38–50. doi: https://doi.org/10.15407/emodel.44.02.038
  3. Esparza, J. (1994). Model checking using net unfoldings. Science of Computer Programming, 23 (2-3), 151–195. doi: https://doi.org/10.1016/0167-6423(94)00019-0
  4. Nesterenko, B. B., Novotarskiy, M. A. (2007). Algebra protsessov dlya modelirovaniya slozhnykh sistem s real'noy rabochey nagruzkoy. Reiestratsiya, zberihannia ta obrobka danykh, 9 (4), 49–59. Available at: http://dspace.nbuv.gov.ua/handle/123456789/50907
  5. Will van der Aalst, Kees van Hee. (2002). Workflow management: Models, Methods, and Systems. MIT Press, 359. doi: https://doi.org/10.7551/mitpress/7301.001.0001
  6. Duarte, L. M., Kramer, J., Uchitel, S. (2015). Using contexts to extract models from code. Software & Systems Modeling, 16 (2), 523–557. doi: https://doi.org/10.1007/s10270-015-0466-0
  7. Yakovyna, V. S., Seniv, M. M., Symets, I. I., Sambir, N. B. (2020). Algorithms and software suite for reliability assessment of complex technical systems. Radio Electronics, Computer Science, Control, 4, 163–177. doi: https://doi.org/10.15588/1607-3274-2020-4-16
  8. Kozina, Y., Maevskiy, D. (2015). Where and When Is Formed of Software Quality? Electrotechnic and Computer Systems, 18, 55–59. Available at: https://eltecs.op.edu.ua/index.php/journal/article/view/1597/803
  9. Drozd, O., Kharchenko, V., Rucinski, A., Kochanski, T., Garbos, R., Maevsky, D. (2019). Development of Models in Resilient Computing. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). doi: https://doi.org/10.1109/dessert.2019.8770035
  10. Cherednichenko, O. Y., Hontar, Y. M., Ivashchenko, O. V., Vovk, M. A. (2018). Analysis of Component-oriented Methods of Software Developing for E-business Engineering. Visnyk of Vinnytsia Politechnical Institute, 2, 80–88. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2218
  11. Ciccozzi, F., Cicchetti, A., Wortmann, A. (2020). Editorial to theme section on interplay of model-driven and component-based software engineering. Software and Systems Modeling, 19 (6), 1461–1463. doi: https://doi.org/10.1007/s10270-020-00812-7
  12. Suprunenko, O. (2021). Combined approach architecture development to simulation modeling of systems with parallelism. Eastern-European Journal of Enterprise Technologies, 4 (4 (112)), 74–82. doi: https://doi.org/10.15587/1729-4061.2021.239212
  13. Suprunenko, O. O., Onyshchenko, B. O., Hrebenovych, Yu. Ye. (2020). Analitychnyi pidkhid pry doslidzhenni vlastyvostei hrafovoi modeli prohramnoi systemy. Pratsi mizhnarodnoi naukovo-praktychnoi konferentsiyi «Matematychne modeliuvannia protsesiv v ekonomitsi ta upravlinni proektamy i prohramamy», Koblevo-Kharkiv: KhNURE, 110–113. Available at: https://mmp-conf.org/documents/archive/proceedings2020.pdf
  14. Suprunenko, O. O. (2019). Combined approach to simulation modeling of the dynamics of software systems based on interpretations of petri nets. KPI Science News, 5-6, 43–53. doi: https://doi.org/10.20535/kpi-sn.2019.5-6.174596
  15. Suprunenko, O. O., Hrebenovych, Yu. Ye. (2022). Instrumentalni zasoby komponentno-orientovanoho modeliuvannia prohramnykh system ta PN-paterny. Cherkasy: Vydavets Chabanenko Yu.A., 82. Available at: https://drive.google.com/file/d/1uN-zDLjUfvlKUCD1lb4GZm2w6x1Hy0AF/view
  16. Kuzmuk, V. V., Suprunenko, O. O. (2010). Modyfytsyrovannыe sety Petry y ustroistva modelyrovanyia parallelnыkh protsessov. Kyiv: Maklaut, 252.
  17. Suprunenko, О., Grebenovych, J. (2022). Convolution method of graph models of software components for analysis of dynamic properties of software systems. Tezy dopovidei VI Mizhnarodnoi naukovo-praktychnoi konferentsiyi «Informatsiyni tekhnolohiyi v osviti, nautsi y tekhnitsi». Cherkasy: ChDTU, 15–18. Available at: https://itest.chdtu.edu.ua/Збірник_тез_ІТОНТ-2022_макет_26_06.pdf
  18. Suprunenko, O., Onyshchenko, B., Grebenovych, J., Nedonosko, P. (2023). Applying a Combined Approach to Modeling of Software Functioning. Lecture Notes on Data Engineering and Communications Technologies, 30–48. doi: https://doi.org/10.1007/978-3-031-35467-0_3
  19. van der Aalst, W. M. P. (2013). Business Process Management: A Comprehensive Survey. ISRN Software Engineering, 2013, 1–37. doi: https://doi.org/10.1155/2013/507984
  20. Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall. Available at: https://dl.icdst.org/pdfs/files3/2bf95f7fde49a09814231bbcbe592526.pdf
  21. Hlomodza, D. K. (2016). Zastosuvannia metodu invariantiv do analizu kolorovykh merezh Petri iz dedlokamy. Visnyk NTUU KPI. Informatyka, upravlinnia ta obchysliuvalna tekhnika, 64, 38–46. Available at: http://ekmair.ukma.edu.ua/bitstream/handle/123456789/10870/Hlomozda_Zastosuvannia_metodu_invariantiv.pdf
  22. Mannel, L. L., van der Aalst, W. M. P. (2019). Finding Complex Process-Structures by Exploiting the Token-Game. Lecture Notes in Computer Science, 258–278. doi: https://doi.org/10.1007/978-3-030-21571-2_15
  23. Meyer, B., Kogtenkov, A., Akhi, A. (2012). Processors and Their Collection. Lecture Notes in Computer Science, 1–15. doi: https://doi.org/10.1007/978-3-642-31202-1_1
  24. Lavrischeva, E. M. (2014). Software Engineering komp'yuternykh sistem. Paradigmy, Tekhnologii, CASE-sredstva programmirovaniya. Kyiv: Naukova dumka, 283.
  25. Kovalenko, A. S., Kuz'muk, V. V., Taranenko, E. A., Suprunenko, O. A., Eremeev, B. N. (2011). Description of the algorithm of interaction of information flow during tissue-cell therapy by ATM equipment. Eastern-European Journal of Enterprise Technologies, 6 (9 (54)), 43–47. Available at: http://journals.uran.ua/eejet/article/view/2343/2147
  26. Zaytsev, D. A., Sleptsov, A. I. (1997). Uravneniya sostoyaniy i ekvivalentnye preobrazovaniya vremennykh setey Petri. Kibernetika i sistemniy analiz, 5, 59–76. Available at: https://www.researchgate.net/profile/Anatolii-Sleptsov/publication/315047362_Zajcev_DA_Slepcov_AI_Uravnenie_sostoanij_i_ekvivalentnye_preobrazovania_vremennyh_setej_Petri_Kibernetika_i_sistemnyj_analiz_No_5_1997_s_59-76/links/58c9056f92851c2b9d56412a/Zajcev-DA-Slepcov-AI-Uravnenie-sostoanij-i-ekvivalentnye-preobrazovania-vremennyh-setej-Petri-Kibernetika-i-sistemnyj-analiz-No-5-1997-s-59-76.pdf
  27. Kryvyi, S., Grinenko, E. (2020). Ecosystems of Software Engineering. Cybernetics and Systems Analysis, 56 (4), 628–640. doi: https://doi.org/10.1007/s10559-020-00280-3
  28. Hlomozda, D. K., Glybovets, M. M., Maksymets, O. M. (2018). Automating the Conversion of Colored Petri Nets with Qualitative Tokens Into Colored Petri Nets with Quantitative Tokens. Cybernetics and Systems Analysis, 54 (4), 650–661. doi: https://doi.org/10.1007/s10559-018-0066-4
Improving the efficiency of dynamic analysis of the combined simulation model for software with parallelism

Downloads

Published

2023-06-30

How to Cite

Suprunenko, O., Onyshchenko, B., & Grebenovich, J. (2023). Improving the efficiency of dynamic analysis of the combined simulation model for software with parallelism. Eastern-European Journal of Enterprise Technologies, 3(2 (123), 26–34. https://doi.org/10.15587/1729-4061.2023.283075