Strengthening of friction surfaces by using geomodifiers based on serpentines from the Dashukivka deposit

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.283441

Keywords:

repair and restoration technologies, friction geomodifiers, serpentine, heavily loaded friction pairs

Abstract

The object of research is the process of improving the tribological characteristics of friction joints, in particular anti-wear and anti-burr properties.

There is a practice of using serpentines, so-called "friction geomodifiers" (FGM), as special repair and restoration additives. Their use leads to a decrease in the coefficient of friction and temperatures in the contact zone; an increase in the mass of parts is observed, which indicates the restoration of worn surfaces. The mechanism of formation of new structures is still unclear. There are hypotheses that severe friction conditions initiate micrometallurgical processes at the atomic-crystalline level, as a result of which modified layers with unique tribological characteristics are formed on the surfaces.

A comparative analysis of the main indicators of serpentines of the Dashukivka deposit in terms of chemical composition and structure showed their correspondence to widely known analogs but they were never used in such a capacity.

According to the results of the tests, the additives have shown their effectiveness as geomodifiers of friction. Addition of 4 % serpentine to the lubricating composition based on I-20 A oil reduced the wear rate by 2–3 times, the friction moment by 15 %, compared to I-20 A without additives.

An increase in surface microhardness was observed, from 6 GPa for the basic variant to 10 GPa, for the variant with FGM additives.

It has been established that the use is most effective for heavily loaded friction pairs (ship fittings, hatch closures, etc.) as it increases the clamping load (from 600 to 1400 N for a pair of steel 45/ShKh15); with increasing load, the coefficient of friction and the rate of wear decrease.

The results confirm the need to expand research into this area to solve the complex problem of increasing the reliability of tribojunctions.

Keywords: repair and restoration technologies, friction geomodifiers, serpentine, heavily loaded friction pairs

Author Biographies

Svіtlana Bodu, Admiral Makarov National University of Shipbuilding

Senior Lecturer

Department of Engineering Mechanics and Machinebuilding Technology

Vyacheslav Andrieiev, Petro Mohyla Black Sea National University

PhD, Associate Professor

Departament of Ecology and Environmental Management

Anton Novoshytskyi, Admiral Makarov National University of Shipbuilding

PhD

Department of Engineering Mechanics and Machinebuilding Technology

References

  1. Soloviov, S., Bodu, S., Trofymova, O. (2007). Porivnialnyi analiz tekhniko-ekonomichnykh i ekolohichnykh pokaznykiv khimiko-termichnoi obrobky. Tekhnohenna bezpeka. Naukovi pratsi, 61 (48), 74–78. Available at: https://lib.chmnu.edu.ua/pdf/naukpraci/technogen/2007/61-48-12.pdf
  2. Solov'ev, S. (2004). Upravlenie nesuschey sposobnost'yu tribosistem metodami makroprofilirovaniya rabochikh poverkhnostey. Problemy trybolohiyi, 2, 10–14.
  3. Solov'ev, S., Bodu, S. (2010). K naznacheniyu posadok i zazorov tsilindroporshnevykh sopryazheniy germetichnykh kompressorov. Dvigateli vnutrennego sgoraniya. Vseukrainskiy nauchno-tekhnicheskiy zhurnal, 2, 127–129. Available at: https://repository.kpi.kharkov.ua/handle/KhPI-Press/254
  4. Chernets, M., Klimenko, L., Pashechko, M., Nevchas, A. (2010). Tribomekhanika. Tribotekhnika. Tribotekhnologii. Vol. 3. Nikolaev: Izd-vo CHGU im. Petra Mogily.
  5. Soloviov, S. M., Bodu, S. Zh. (2012). Pidvyshchennia nesuchoi zdatnosti vazhkonavantazhenykh par tertia. Naukovi pratsi [Chornomorskoho derzhavnoho universytetu imeni Petra Mohyly]. Ser.: Tekhnohenna bezpeka, 203 (191), 27–31. Available at: http://nbuv.gov.ua/UJRN/Npchdutb_2012_203_191_7
  6. Chen, W., Gao, Y., Zhang, H. (2009). XPS and SEM Analyses of Self-Repairing Film Formed by Mineral Particles as Lubricant Additives on the Metal Friction Pairs. Advanced Tribology, 660–664. doi: https://doi.org/10.1007/978-3-642-03653-8_215
  7. Dolgopolov, K. N., Lyubimov, D. N., Ponomarenko, A. G., Chigarenko, G. G., Boiko, M. V. (2009). The structure of lubricating layers appearing during friction in the presence of additives of mineral friction modifiers. Journal of Friction and Wear, 30 (5), 377–380. doi: https://doi.org/10.3103/s1068366609050134
  8. Pogodaev, L. I., Buyanovskii, I. A., Kryukov, E. Yu., Kuz’min, V. N., Usachev, V. V. (2009). The mechanism of interaction between natural laminar hydrosilicates and friction surfaces. Journal of Machinery Manufacture and Reliability, 38 (5), 476–484. doi: https://doi.org/10.3103/s1052618809050124
  9. Wang, P., Lv, J., Wang, L. H., Ma, Q., Zhu, X. H. (2011). Research on Tribological Properties of Serpentine Particles as Lubricating Oil Additives. Advanced Materials Research, 284-286, 1001–1005. doi: https://doi.org/10.4028/www.scientific.net/amr.284-286.1001
  10. Dolgopolov, K. N., Lyubimov, D. N., Kozakov, A. T., Nikol’skii, A. V., Glazunova, E. A. (2012). Tribochemical aspects of interactions between high-dispersed serpentine particles and metal friction surface. Journal of Friction and Wear, 33 (2), 108–114. doi: https://doi.org/10.3103/s1068366612020031
  11. Zhang, J., Tian, B., Wang, C. (2013). Long-term surface restoration effect introduced by advanced silicate based lubricant additive. Tribology International, 57, 31–37. doi: https://doi.org/10.1016/j.triboint.2012.07.014
  12. Dunaev, A. V., Zuev, V., Vasilkov, D. V., Lavrov, Y., Pavlov, O. G., Pustovoy, I. F., Sokol, S. A. The hypotheses of mechanisms of action repair serpentine tribopraparatov. Trudy GOSNITI, 112 (2), 134–142. Available at: http://www.oilchoice.ru/download/file.php?id=3797
  13. Telukh, D., Kuz'min, V., Usachev, V. (2009). Vvedenie v problemu ispol'zovaniya sloistykh gidrosilikatov v tribosopryazheniyakh. Internet-zhurnal «Trenie, iznos, smazka», 3. Available at: http://www.oilchoice.ru/download/file.php?id=2209
  14. Yue, W., Wang, C., Liu, Y., Huang, H., Wen, Q., Liu, J. (2010). Study of the Regenerated Layer on the Worn Surface of a Cylinder Liner Lubricated by a Novel Silicate Additive in Lubricating Oil. Tribology Transactions, 53 (2), 288–295. doi: https://doi.org/10.1080/10402000903420787
  15. Qi, X., Jia, Z., Chen, H., Yang, Y., Wu, Z. (2013). Self-Repairing Characteristics of Serpentine Mineral Powder as an Additive on Steel–Chromium Plating Pair under High Temperature. Tribology Transactions, 56 (3), 516–520. doi: https://doi.org/10.1080/10402004.2013.765060
  16. Qi, X., Jia, Z., Yang, Y., Fan, B. (2011). Characterization and auto-restoration mechanism of nanoscale serpentine powder as lubricating oil additive under high temperature. Tribology International, 44 (7-8), 805–810. doi: https://doi.org/10.1016/j.triboint.2011.02.001
  17. Yuansheng, J., Shenghua, L., Zhengye, Z., He, Y., Feng, W. (2004). In situ mechanochemical reconditioning of worn ferrous surfaces. Tribology International, 37 (7), 561–567. doi: https://doi.org/10.1016/j.triboint.2003.12.005
  18. Nan, F., Xu, Y., Xu, B., Gao, F., Wu, Y., Li, Z. (2015). Tribological behaviors and wear mechanisms of ultrafine magnesium aluminum silicate powders as lubricant additive. Tribology International, 81, 199–208. doi: https://doi.org/10.1016/j.triboint.2014.09.006
  19. Zhang, B., Xu, B., Xu, Y., Zhang, B. (2011). Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate on various surface roughness friction pairs. Journal of Central South University, 18 (5), 1326–1333. doi: https://doi.org/10.1007/s11771-011-0841-0
  20. Yu, H., Xu, Y., Shi, P., Wang, H., Wei, M., Zhao, K., Xu, B. (2013). Microstructure, mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive. Wear, 297 (1-2), 802–810. doi: https://doi.org/10.1016/j.wear.2012.10.013
  21. Yu, H. L., Xu, Y., Shi, P. J., Wang, H. M., Zhang, W., Xu, B. S. (2011). Effect of thermal activation on the tribological behaviours of serpentine ultrafine powders as an additive in liquid paraffin. Tribology International, 44 (12), 1736–1741. doi: https://doi.org/10.1016/j.triboint.2011.06.022
  22. Kadoshnikov, V. M., Shekhunova, S. B., Zadvernyuk, H. P., Manichev, V. I. (2013). Authigenic minerals in the bentonite clay of Cherkassy deposit. Mineralogical Journal, 35 (3), 54–60. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&Z21ID=&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/Mineral_2013_35_3_8.pdf
  23. De Barros Bouchet, M. I., Kano, M. (2007). Superlubricity of Diamond/Glycerol Technology Applied to Automotive Gasoline Engines. Superlubricity, 471–492. doi: https://doi.org/10.1016/b978-044452772-1/50056-1
  24. Erdemir, A., Eryilmaz, O. L. (2007). Superlubricity in Diamondlike Carbon Films. Superlubricity, 253–271. doi: https://doi.org/10.1016/b978-044452772-1/50047-0
  25. Fontaine, J., Donnet, C. (2007). Superlow Friction of a-C:H Films: Tribochemical and Rheological Effects. Superlubricity, 273–294. doi: https://doi.org/10.1016/b978-044452772-1/50048-2
  26. Yuansheng, J., Shenghua, L. (2007). Superlubricity of In Situ Generated Protective Layer on Worn Metal Surfaces in Presence of Mg6Si4O10(OH)8. Superlubricity, 445–469. doi: https://doi.org/10.1016/b978-044452772-1/50055-x
  27. Freyman, C., Zhao, B., Chung, Y.-W. (2007). Suppression of Moisture Sensitivity of Friction in Carbon-Based Coatings. Superlubricity, 295–310. doi: https://doi.org/10.1016/b978-044452772-1/50049-4
  28. Kano, M. (2015). Overview of DLC-Coated Engine Components. Coating Technology for Vehicle Applications, 37–62. doi: https://doi.org/10.1007/978-3-319-14771-0_3
  29. Donnet, C., Erdemir, A. (Eds.) (2008). Tribology of Diamond-Like Carbon Films. Springer. doi: https://doi.org/10.1007/978-0-387-49891-1
  30. Nagashima, S., Moon, M.-W. (2015). Diamond-Like Carbon Coatings with Special Wettability for Automotive Applications. Coating Technology for Vehicle Applications, 191–202. doi: https://doi.org/10.1007/978-3-319-14771-0_11
  31. Street, K. W., Miyoshi, K., Vander Wal, R. L. (2007). Application of Carbon Based Nano-Materials to Aeronautics and Space Lubrication. Superlubricity, 311–340. doi: https://doi.org/10.1016/b978-044452772-1/50050-0
  32. Nakayama, K. (1995). Triboemission And Wear Of Hydrogenated Carbon Films. MRS Proceedings, 409. doi: https://doi.org/10.1557/proc-409-391
  33. Balabanov, V. I., Boykov, V. Yu., Balabanova, T. V. (2016). Analyzing repair and reconstructive composites for automotive and tractor mashinery. Agroinzheneriya, 3, 45–52. Available at: https://cyberleninka.ru/article/n/issledovanie-remontno-vosstanovitelnyh-sostavov-dlya-avtotraktornoy-tehniki
  34. Olishevska, V., Bas, K., Litvin, P. (2010). Treatment of machines friction connections by nanotribosubstances ат dismantling service. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 51, 156–161. Available at: https://cyberleninka.ru/article/n/obrabotka-truschihsya-soedineniy-mashin-nanotribopreparatami-pri-bezrazbornom-servise
Strengthening of friction surfaces by using geomodifiers based on serpentines from the Dashukivka deposit

Downloads

Published

2023-06-30

How to Cite

Bodu, S., Andrieiev, V., & Novoshytskyi, A. (2023). Strengthening of friction surfaces by using geomodifiers based on serpentines from the Dashukivka deposit. Eastern-European Journal of Enterprise Technologies, 3(12 (123), 38–47. https://doi.org/10.15587/1729-4061.2023.283441

Issue

Section

Materials Science