Determining the deformation properties of crushed rock under compressive compression conditions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.284386

Keywords:

crushed rock, fill material, compressive compression, potential energy, bearing capacity

Abstract

The object of this study is the process that forms fill materials from crushed rock under load for managing the condition of side rocks in a coal-bearing massif with preparatory workings. Deformation properties of crushed rock under laboratory conditions were evaluated on the basis of a study of compressive compression of the fill material. It was registered that there is a quadratic functional dependence between the change in the bulk density of crushed rock of different granulometric composition and the specific potential energy of deformation. It was experimentally established that the specific potential energy of deformation reaches the limit values at the maximum compression of crushed rock when the fill material consists of parts of different sizes.

For experimental samples with different thickness of the rock layer h0 (m), there was a linear relationship between their longitudinal deformation Dh (m) and the external load F (kN), which determined the behavior of the deforming body at critical levels. Under such conditions, with a relative change in the volume of the fill material dV=0.36, that is, with the same relative deformation at any values of the parameter h0 (m) and the compaction coefficient of the crushed rock kcon=1.57, the maximum stiffness of the rock supports was ensured.

With a limited amount of external static load on the experimental samples, in the process of their deformation when the parameter h0 was reduced by 2 times before their compression, the compaction coefficient of the crushed rock increased from kcon=1.33 to kcon=1.57. At the same time, the specific potential energy of deformation increased by 40 %, which made it possible to ensure the maximum rigidity of the fill material at the minimum value of the longitudinal deformation Dh (m) of the experimental samples

Author Biographies

Daria Chepiga, Donetsk National Technical University

PhD, Associate Professor

Department of Mining Management and Labour Protection

Serhii Pakhomov, State Enterprise "Myrnogradvugilya"

Director

Vitalii Hnatyuk, PJSC "Pokrovske Mine Management"

Production Director

Maksym Hryhorets, Donetsk National Technical University

Postgraduate Student

Department Mining Management and Labour Protection

Yaroslav Liashok, Donetsk National Technical University

Doctor of Economic Sciences, Professor

Department of Mining Management and Labour Protection

Serhii Podkopaiev, Donetsk National Technical University

Doctor of Technical Sciences, Professor

Department of Mining Management and Labour Protection

References

  1. Iordanov, I., Buleha, I., Bachurina, Y., Boichenko, H., Dovgal, V., Kayun, O. et al. (2021). Experimental research on the haulage drifts stability in steeply dipping seams. Mining of Mineral Deposits, 15 (4), 56–67. doi: https://doi.org/10.33271/mining15.04.056
  2. Galvin, J. M. (2016). Ground Engineering - Principles and Practices for Underground Coal Mining. Springer, 684. doi: https://doi.org/10.1007/978-3-319-25005-2
  3. Podkopaiev, S., Gogo, V., Yefremov, I., Kipko, O., Iordanov, I., Simonova, Y. (2019). Phenomena of stability of the coal seam roof with a yielding support. Mining of Mineral Deposits, 13 (4), 28–41. doi: https://doi.org/10.33271/mining13.04.028
  4. Petlovanyi, M., Malashkevych, D., Sai, K Zubko, S. (2020). Research into balance of rocks and underground cavities formation in the coal mine flowsheet when mining thin seams. Mining of Mineral Deposits, 14 (4), 66–81. doi: https://doi.org/10.33271/mining14.04.066
  5. Maydukov, G. L. (2007). Kompleksnoe ispol'zovanie ugol'nykh mestorozhdeniy Donbassa kak osnova ekologicheskoy bezopasnosti i energosberezheniy v regione. Ekonomichnyi visnyk Donbasu, 4, 12–19.
  6. Krupnik, L. A., Shaposhnik, Yu. N., Shaposhnik, S. N., Tursunbaeva, A. K. (2013). Backfilling technology in Kazakhstan mines. Journal of Mining Science, 49 (1), 82–89. doi: https://doi.org/10.1134/s1062739149010103
  7. Bachurin, L. L., Iordanov, I. V., Simonova, Yu. I., Korol, A. V., Podkopaiev, Ye. S., Kaiun, O. P. (2020). Experimental studies of the deformation characteristics of filling massifs. Technical Engineering, 2 (86), 136–149. https://doi.org/10.26642/ten-2020-2(86)-136-149
  8. Bachurin, L., Iordanov, I., Kohtieva, O., Dovgal, V., Boichenko, H., Bachurina, Y. et al. (2021). Estimation of stability of roadways surrounding rocks in a coal-rock stratum considering a deformation characteristics of secondary support structures. JOURNAL of Donetsk Mining Institute, 1, 64–74. doi: https://doi.org/10.31474/1999-981x-2021-1-64-74
  9. Czichos, H. (2013). Physics of Failure. Handbook of Technical Diagnostics, 23–40. doi: https://doi.org/10.1007/978-3-642-25850-3_3
  10. Nasonov, I. D. (1978). Modelirovanie gornykh protsessov. Moscow: Nedra, 256.
  11. Laboratorniy praktikum po kursu «Mekhanika gornykh porod» (2012). Donetsk. Available at: http://ea.donntu.edu.ua/bitstream/123456789/15314/1/Подкопаев%20С.В.%2C%20Гавриш%20%20Н.Н.%2C%20Деглин%20Б.М.%2C%20Каменец%20В.И.%2C%20Зинченко%20С.А.%20Лабораторный%20практикум%20по%20курсу%20%28Механика%20горных%20пород%29.pdf
  12. Iordanov, I., Novikova, Y., Simonova, Y., Yefremov, O., Podkopayev, Y., Korol, A. (2020). Experimental characteristics for deformation properties of backfill mass. Mining of Mineral Deposits, 14 (3), 119–127. doi: https://doi.org/10.33271/mining14.03.119
  13. Stupishin, L. U. (2014). Variational Criteria for Critical Levels of Internal Energy of a Deformable Solids. Applied Mechanics and Materials, 578-579, 1584–1587. doi: https://doi.org/10.4028/www.scientific.net/amm.578-579.1584
  14. Stupishin, L. Yu. (2011). Variatsionnyy kriteriy kriticheskikh urovney vnutrenney energii deformiruemogo tela. Promyshlennoe i grazhdanskoe stroitel'stvo, 8, 21–23.
  15. Meshkov, Yu. Ya. (2001). The Concept of a Critical Density of Energy in Models of Fracture of Solids. Uspehi Fiziki Metallov, 2 (1), 7–50. doi: https://doi.org/10.15407/ufm.02.01.007
  16. Tkachuk, O., Chepiga, D., Pakhomov, S., Volkov, S., Liashok, Y., Bachurina, Y. et al. (2023). Evaluation of the effectiveness of secondary support of haulage drifts based on a comparative analysis of the deformation characteristics of protective structures. Eastern-European Journal of Enterprise Technologies, 2 (1 (122)), 73–81. doi: https://doi.org/10.15587/1729-4061.2023.272454
  17. Dekking, F. M., Kraaikamp, C., Lopuhaä, H. P., Meester, L. E. (2005). A Modern Introduction to Probability and Statistics. Springer Texts in Statistics. doi: https://doi.org/10.1007/1-84628-168-7
  18. Iordanov, I., Simonova, Y., Kayun, O., Podkopayev, Y., Polozhii, A., Boichenko, H. (2020). Substantiation of the stability of haulage drifts with protective structures of different rigidity. Eastern-European Journal of Enterprise Technologies, 3 (7 (105)), 87–96. doi: https://doi.org/10.15587/1729-4061.2020.202483
Determining the deformation properties of crushed rock under compressive compression conditions

Downloads

Published

2023-08-31

How to Cite

Chepiga, D., Pakhomov, S., Hnatyuk, V., Hryhorets, M., Liashok, Y., & Podkopaiev, S. (2023). Determining the deformation properties of crushed rock under compressive compression conditions . Eastern-European Journal of Enterprise Technologies, 4(1 (124), 85–95. https://doi.org/10.15587/1729-4061.2023.284386

Issue

Section

Engineering technological systems