Improving the work process efficiency of a tillage module for pre-sowing tillage

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.284597

Keywords:

soil environment, arable horizon, differentiated structure, pre-sowing treatment, simulation, modeling

Abstract

The formation of a differentiated structure of the arable horizon during the pre-sowing processing of the grant is a relevant task that can be solved by designing appropriate soil-processing technical means.

A scientific hypothesis has been put forward, according to which increasing the efficiency of the process of forming a differentiated structure of the arable horizon can be achieved by improving the design and substantiating the structural and technological parameters of the tillage module for pre-sowing tillage. Numerical simulation was carried out in the Simcenter STAR-CCM+ software package using the Lagrangian multiphase model employing the discrete element method. Calculation of second-order regression equations and statistical processing of the obtained data was carried out in the Wolfram Cloud software package.

As a result of the simulation of the improved design of the tillage module, which includes one drum, plowshare, casing, and cleaner, it was found that it performs the operation of separation and redistribution of soil aggregates with almost the same efficiency as the basic design with 2 drums and plowshare.

As a result of the simulation of the work process of the improved tillage module, regression equations of the content of the 10–30 mm fraction in the 0–4 cm soil layer and the content of the 0–10 mm fraction in the 4–8 cm soil layer from the research factors were obtained. The chosen factors of influence were a casing outlet clearance, casing inlet clearance angle, cleaner inclination angle, drum rotation frequency, unit movement speed, and processing depth. Solving the problem of multi-criteria optimization, the rational structural and technological parameters of the tillage module for pre-sowing tillage were calculated

Author Biographies

Elchyn Aliiev, Institute of Oilseed Crops of the National Academy of Agrarian Sciences of Ukraine

Doctor of Technical Sciences, Senior Researcher, Chief Researcher

Department of Technical and Technological Support of Seed Production

Hennadii Tesliuk, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Tractors and Agricultural Machinery

Olena Zolotovska, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Tractors And Agricultural Machinery

Andrii Puhach, Dnipro State Agrarian and Economic University

Doctor of Public Administration, PhD, Professor

Department of Tractors And Agricultural Machinery

Vladyslav Boiko, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Tractors And Agricultural Machinery

Oleksandr Kobets

PhD, Associate Professor

References

  1. Atkinson, B. S. (2008). Identification of optimum seedbed preparation for establishment using soil structural visualization. University of Nottingham. Available at: https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/3031_final_report_sr06.pdf
  2. Yankov, P., Drumeva, M. (2017). Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region. Agricultural Science and Technology, 9 (2), 124–128. doi: https://doi.org/10.15547/ast.2017.02.022
  3. Lemic, D., Pajač Živković, I., Posarić, M., Bažok, R. (2021). Influence of Pre-Sowing Operations on Soil-Dwelling Fauna in Soybean Cultivation. Agriculture, 11 (6), 474. doi: https://doi.org/10.3390/agriculture11060474
  4. Sarkar, P., Upadhyay, G., Raheman, H. (2021). Active-passive and passive-passive configurations of combined tillage implements for improved tillage and tractive performance: A review. Spanish Journal of Agricultural Research, 19 (4), e02R01. doi: https://doi.org/10.5424/sjar/2021194-18387
  5. Okolelova, A. A., Glinushkin, A. P., Sviridova, L. L., Podkovyrov, I. Y., Nefedieva, E. E., Egorova, G. S. et al. (2022). Biogeosystem Technique (BGT*) Methodology Will Provide Semiarid Landscape Sustainability (A Case of the South Russia Volgograd Region Soil Resources). Agronomy, 12 (11), 2765. doi: https://doi.org/10.3390/agronomy12112765
  6. Hartemink, A. E., Zhang, Y., Bockheim, J. G., Curi, N., Silva, S. H. G., Grauer-Gray, J. et al. (2020). Soil horizon variation: A review. Advances in Agronomy, 125–185. doi: https://doi.org/10.1016/bs.agron.2019.10.003
  7. Bronick, C. J., Lal, R. (2005). Soil structure and management: a review. Geoderma, 124 (1-2), 3–22. doi: https://doi.org/10.1016/j.geoderma.2004.03.005
  8. Shevchenko, I. A. (2016). Keruvannia ahrofizychnym stanom gruntovoho seredovyshcha. Kyiv: Vydavnychyi dim «Vinichenko», 320.
  9. Pastukhov, V. I., Bielovol, S. A. (2014). Investigation of displacement of crushed soil in a vertical plane under the action of rotary tillage machines. Engineering of nature management, 2 (2), 80–83. Available at: https://repo.btu.kharkov.ua/bitstream/123456789/3582/1/16.pdf
  10. Sereda, L., Trukhanska, E., Shvets, L. (2019). Development and research of soil machine for strip-till technology with active milling working bodies. Vibrations in Engineering and Technology, 4 (95), 65–71. doi: https://doi.org/10.37128/2306-8744-2019-4-8
  11. Levchenko, P. (2014). Mashyny z aktyvnymy robochymy orhanamy v silhospvyrobnytstvi Ukrainy. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy, 18 (1), 309–316. Available at: http://nbuv.gov.ua/UJRN/Ttar_2014_18%281%29__34
  12. Toscano, P., Brambilla, M., Cutini, M., Bisaglia, C. (2022). The Stony Soils Reclamation Systems in Agricultural Lands: A Review. Agricultural Sciences, 13 (04), 500–519. doi: https://doi.org/10.4236/as.2022.134034
  13. Kalinitchenko, V. P., Glinushkin, A. P., Sharshak, V. K., Ladan, E. P., Minkina, T. M., Sushkova, S. N. et al. (2021). Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil. Processes, 9 (8), 1302. doi: https://doi.org/10.3390/pr9081302
  14. Shinde, G. U., Kajale, S. R. (2012). Design Optimization in Rotary Tillage Tool System Components by Computer Aided EngineeringAnalysis. International Journal of Environmental Science and Development, 3 (3), 279–282. doi: https://doi.org/10.7763/ijesd.2012.v3.231
  15. Niu, Y., Zhang, J., Qi, J., Meng, H., Peng, H., Li, J. (2023). Design and Test of Soil–Fertilizer Collision Mixing and Mulching Device for Manure Deep Application Machine. Agriculture, 13 (3), 709. doi: https://doi.org/10.3390/agriculture13030709
  16. Shevchenko, I. A., Kryzhachivskyi, R. M., Trachov, V. V. (2001). Pat. No. 41108 UA. Soil separator. No. 2001020958; declareted: 13.02.2001; published: 15.08.2001, Bul. No. 7. Available at: https://uapatents.com/4-41108-gruntovijj-separator.html
  17. Shevchenko, I. A., Koviazyn, O. S., Kryzhachivskyi, R. M. (2003). Pat. No. 64446 UA. Ploughshare and drum soil separator. No. 2003065074; declareted: 03.06.2003. published: 17.07.2006, Bul. No. 7. Available at: https://uapatents.com/2-64446-lemishno-barabannijj-separator-gruntu.html
  18. Shevchenko, I., Kryzhachkivskyi, R., Koviazin, O. (2006). Polovi doslidzhennia sektsiyi hruntovoho separatora dlia peredposivnoho obrobitku gruntu. Tekhnika APK, 12, 6–7.
  19. Koviazyn, O. S. (2005). Metodyka provedennia eksperymentalnykh doslidzhen lemishno-barabannoho separatora gruntu. Pratsi TDATA, 28, 152–157.
  20. Hutsol, O. P., Kovbasa, V. P. (2016). Obgruntuvannia parametriv i rezhymiv rukhu gruntoobrobnykh mashyn z dyskovymy robochymy orhanamy. Kyiv; Nizhyn: Lysenko M. M. [vyd.], 145.
  21. Kovbasa, V. P. (2016). Mekhanika vzaiemodii robochykh orhaniv iz gruntom. Kyiv; Nizhyn: Lysenko M. M. [vyd.], 297.
  22. Aliev, E. B., Yaropud, V. M., Dudin, V. Yr., Pryshliak, V. M., Pryshliak, N. V., Ivlev, V. V. (2018). Research on sunflower seeds separation by airflow. INMATEH – Agricultural Engineering, 56 (3), 119–128.
  23. Aliiev, E., Pavlenko, S., Golub, G., Bielka, O. (2022). Research of mechanized process of organic waste composting. Agraarteadus, Journal of Agricultural Science, 33 (1), 21–32. doi: https://doi.org/10.15159/jas.22.04
  24. Ucgul, M. (2023). Simulating Soil–Disc Plough Interaction Using Discrete Element Method–Multi-Body Dynamic Coupling. Agriculture, 13 (2), 305. doi: https://doi.org/10.3390/agriculture13020305
  25. Okayasu, T., Morishita, K., Terao, H., Mitsuoka, M., Inoue, E., Fukami, K. (2012). Modeling and prediction of soil cutting behavior by a plow. International Conference of Agricultural Engineering CIGR-Ageng 2012 "Agriculture & Engineering for a Healthier Life". Valencia.
  26. Xu, T., Zhang, R., Wang, Y., Jiang, X., Feng, W., Wang, J. (2022). Simulation and Analysis of the Working Process of Soil Covering and Compacting of Precision Seeding Units Based on the Coupling Model of DEM with MBD. Processes, 10 (6), 1103. doi: https://doi.org/10.3390/pr10061103
  27. Tagar, A. A., Changying, J., Adamowski, J., Malard, J., Qi, C. S., Qishuo, D., Abbasi, N. A. (2015). Finite element simulation of soil failure patterns under soil bin and field testing conditions. Soil and Tillage Research, 145, 157–170. doi: https://doi.org/10.1016/j.still.2014.09.006
Improving the work process efficiency of a tillage module for pre-sowing tillage

Downloads

Published

2023-08-31

How to Cite

Aliiev, E., Tesliuk, H., Zolotovska, O., Puhach, A., Boiko, V., & Kobets, O. (2023). Improving the work process efficiency of a tillage module for pre-sowing tillage. Eastern-European Journal of Enterprise Technologies, 4(1 (124), 60–71. https://doi.org/10.15587/1729-4061.2023.284597

Issue

Section

Engineering technological systems