Design of the parametric appearance of the power plant for modifications of the regional passenger aircraft An-158

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.284806

Keywords:

remotorization, turboprop engine, single-row propeller, takeoff and landing characteristics, kilometer fuel consumption

Abstract

The object of research is the process of remotorization of a regional passenger aircraft to increase its fuel efficiency. Based on the conceptual requirements for the remotorization of the An-158 aircraft with turbojet bypass engines, a parametric appearance of three modifications of this aircraft with turboprop engines for 80, 100, and 120 passenger seats was formed. The study was carried out on the basis of the well-known modular software systems «Integration 2.1» and «Air propeller 2.2» for typical flight profiles of the An-158 aircraft. Improved procedures of weight design and determination of the takeoff characteristics of aircraft with different types of power plant engines have made it possible to identify the most advantageous flight speeds of aircraft modifications with a turboprop engine corresponding to different flight masses. The results of the study of flight performance for optimal and «non-optimal» modifications of the aircraft are reported. The parametric appearance of the propeller was formed, the shape of the propeller blade for the cruising flight mode was determined for modifying the aircraft with a maximum number of passengers – 120 people. It is shown that the propeller for this modification of the aircraft cannot have less than 8 blades since with a smaller number of blades, the maximum chord of the propeller blade increases. The inductive power costs increase significantly due to the small elongation of the blades and, as a result, the flight efficiency of the propeller decreases. It is shown that the total fuel consumption for the entire typical flight of all modifications of the aircraft with turboprop engine at all studied flight speeds is less than the total fuel consumption of the An-158 base aircraft

Author Biographies

Vasyl Loginov, JSC “FED”

Doctor of Technical Sciences, Professor

Department of Programs and Projects

Yevgen Ukrainets, Ivan Kozhedub Kharkiv National Air Force University

Doctor of Technical Sciences, Professor

Department of Design and Durability of Aircraft and Engines

Andrii Humennyi, National Aerospace University "Kharkiv Aviation Institute"

PhD, Associate Professor

Department of Aircraft and Helicopter Design

Olexandr Yelans'ky, State Enterprise "Ivchenko-Progress"

PhD

Department of Advanced Development and Gas Dynamic Calculations

Dmytro Konyshev, Antonov Company

Design Engineer of the 1st Category

Calculation and Research Department for Conceptual Determination of the form of Prospective Developments

Yevhen Spirkin, Ivan Kozhedub Kharkiv National Air Force University

PhD

Department of Design and Durability of Aircraft and Engines

Vitalii Bezdielnyi, Ivan Kozhedub Kharkiv National Air Force University

Department of Design and Durability of Aircraft and Engines

References

  1. Atilgan, R., Turan, O. (2020). Economy and exergy of aircraft turboprop engine at dynamic loads. Energy, 213, 118827. doi: https://doi.org/10.1016/j.energy.2020.118827
  2. Pereira, B. A., Lohmann, G., Houghton, L. (2022). Technology trajectory in aviation: Innovations leading to value creation (2000–2019). International Journal of Innovation Studies, 6 (3), 128–141. doi: https://doi.org/10.1016/j.ijis.2022.05.001
  3. Afonso, F., Sohst, M., Diogo, C. M. A., Rodrigues, S. S., Ferreira, A., Ribeiro, I. et al. (2023). Strategies towards a more sustainable aviation: A systematic review. Progress in Aerospace Sciences, 137, 100878. doi: https://doi.org/10.1016/j.paerosci.2022.100878
  4. Gnadt, A. R., Speth, R. L., Sabnis, J. S., Barrett, S. R. H. (2019). Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Progress in Aerospace Sciences, 105, 1–30. doi: https://doi.org/10.1016/j.paerosci.2018.11.002
  5. Della Vecchia, P., Nicolosi, F. (2014). Aerodynamic guidelines in the design and optimization of new regional turboprop aircraft. Aerospace Science and Technology, 38, 88–104. doi: https://doi.org/10.1016/j.ast.2014.07.018
  6. Pelz, P. F., Leise, P., Meck, M. (2021). Sustainable aircraft design – A review on optimization methods for electric propulsion with derived optimal number of propulsors. Progress in Aerospace Sciences, 123, 100714. doi: https://doi.org/10.1016/j.paerosci.2021.100714
  7. Mondoloni, S., Rozen, N. (2020). Aircraft trajectory prediction and synchronization for air traffic management applications. Progress in Aerospace Sciences, 119, 100640. doi: https://doi.org/10.1016/j.paerosci.2020.100640
  8. Sparano, M., Sorrentino, M., Troiano, G., Cerino, G., Piscopo, G., Basaglia, M., Pianese, C. (2023). The future technological potential of hydrogen fuel cell systems for aviation and preliminary co-design of a hybrid regional aircraft powertrain through a mathematical tool. Energy Conversion and Management, 281, 116822. doi: https://doi.org/10.1016/j.enconman.2023.116822
  9. Zhang, M., Chen, Z., Tan, Z., Gu, W., Li, D., Yuan, C., Zhang, B. (2019). Effects of stability margin and thrust specific fuel consumption constrains on multi-disciplinary optimization for blended-wing-body design. Chinese Journal of Aeronautics, 32 (8), 1847–1859. doi: https://doi.org/10.1016/j.cja.2019.05.018
  10. Gomez, A., Smith, H. (2019). Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerospace Science and Technology, 95, 105438. doi: https://doi.org/10.1016/j.ast.2019.105438
  11. Manikandan, M., Vaidya, E., Pant, R. S. (2022). Design and analysis of hybrid electric multi-lobed airship for cargo transportation. Sustainable Energy Technologies and Assessments, 51, 101892. doi: https://doi.org/10.1016/j.seta.2021.101892
  12. Massaro, M. C., Biga, R., Kolisnichenko, A., Marocco, P., Monteverde, A. H. A., Santarelli, M. (2023). Potential and technical challenges of on-board hydrogen storage technologies coupled with fuel cell systems for aircraft electrification. Journal of Power Sources, 555, 232397. doi: https://doi.org/10.1016/j.jpowsour.2022.232397
  13. Maykapar, G. I. (1946). Printsipy proektirovaniya sablevidnykh lopastey. Tekhotchety TsAGI, 61.
  14. Mel'nikov, A. P., Svechnikov, V. V. (1947). Teoriya i raschet lopastey vinta. Leningrad: Izdanie LKVVIA, 152.
  15. Loginov, V. V., Ukrainetc, E. A., Kravchenko, I. F., Yelanskiy, A. V. (2014). Engineering-and-economical performance estimation methodic of a light domestic airliner - turboprop engine system. Systemy ozbroiennia i viyskova tekhnika, 1 (37), 150–160. Available at: http://nbuv.gov.ua/UJRN/soivt_2014_1_34
  16. Loginov, V. V., Kravchenko, I. F., Elanskiy, A. V., Smyk, S. I. (2012). Uluchshenie letno-tekhnicheskikh kharakteristik uchebno-trenirovochnogo samoleta na osnove vybora i zameny dvigatelya silovoy ustanovki. Systemy ozbroiennia i viyskova tekhnika, 1 (29), 60–67.
  17. Loginov, V., Ukraintes, Y. (2016). Analysis of operational characteristics of aviation dieseland gas turbine engines for light passenger aircraft. Transactions of the Institute of Aviation, 4 (245), 103–115. doi: https://doi.org/10.5604/05096669.1226429
  18. Skibin, V. A. (Ed.) (2004). Raboty veduschikh aviatsionnykh dvigatelestroitel'nykh kompaniy po sozdaniyu perspektivnykh aviatsionnykh dvigateley. Moscow: TsIAM, 254.
  19. Yugov, O. K., Selivanov, O. D. (1989). Osnovy integratsii samoleta i dvigatelya. Moscow: Mashinostroenie, 304.
  20. Zolot'ko, E. M., Mikheev, V. YA., Nabatov, L. N., Romashkin, I. K. (1989). Issledovaniya po povysheniyu effektivnosti sistemy obduva na krupnomasshtabnoy modeli samoleta s rabotayuschimi dvigatelyami. Trudy TsAGI, 2431.
  21. Zolot'ko, E. M. (1984). Podemnaya sila kryla, obduvaemogo struey ot vintov, pri izmenenii koeffitsienta nagruzki na ometaemuyu vintom ploschad' ot 0 do. Trudy TsAGI, 2235, 3–10.
  22. Loginov, V., Ukrainets, Y., Popov, V., Spirkin, Y. (2021). Determining the Aerodynamic Characteristics of a Propeller-Driven Anti-UAV Fighter While Designing Air Propellers. Transactions on Aerospace Research, 2021 (4), 53–67. doi: https://doi.org/10.2478/tar-2021-0023
  23. Lefebvre, T., Canard, S., Le Tallec, C., Beaumier, P., David, F. (2010). ANIBAL: A new aero-acoustic optimized propeller for light aircraft applications. 27th Congress of the International Council of the Aeronautical Sciences. Available at: https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/734.PDF
  24. Hubbard, H. H. (1991). Aeroacoustics of flight vehicles: Theory and Practice. Volume 1: Noise sources. NASA References, 1258. Available at: https://ntrs.nasa.gov/api/citations/19920001380/downloads/19920001380.pdf
  25. Bravo-Mosquera, P. D., Catalano, F. M., Zingg, D. W. (2022). Unconventional aircraft for civil aviation: A review of concepts and design methodologies. Progress in Aerospace Sciences, 131, 100813. doi: https://doi.org/10.1016/j.paerosci.2022.100813
  26. Tucci, H. N. P., de Oliveira Neto, G. C., Rodrigues, F. L., Giannetti, B. F., Almeida, C. M. V. B. de (2021). Six sigma with the blue economy fundamentals to assess the economic and environmental performance in the aircraft refueling process. Renewable and Sustainable Energy Reviews, 150, 111424. doi: https://doi.org/10.1016/j.rser.2021.111424
  27. Le Clainche, S., Ferrer, E., Gibson, S., Cross, E., Parente, A., Vinuesa, R. (2023). Improving aircraft performance using machine learning: A review. Aerospace Science and Technology, 138, 108354. doi: https://doi.org/10.1016/j.ast.2023.108354
  28. Loginov, V., Ukrainets, Y., Kravchenko, I., Yelansky, А. (2019). Analysis and selection of the parametric profile of a powerplant engine for a light trainer aircraft. Eastern-European Journal of Enterprise Technologies, 1 (1), 59–68. doi: https://doi.org/10.15587/1729-4061.2019.154310
  29. Anipko, O. B., Bashinskiy, V. G., Loginov, V. V., Semenov, V. B., (2013). Integratsiya silovoy ustanovki i planera transportnogo samoleta. Zaporozh'e: Motor Sich, 328.
  30. Popov, V., Loginov, V., Ukrainets, Y., Shmyrov, V., Steshenko, P., Hlushchenko, P. (2020). Improving aircraft fuel efficiency by using the adaptive wing and winglets. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 51–59. doi: https://doi.org/10.15587/1729-4061.2020.200664
  31. Shaidakov, V. I., Ignatkin, Yu. M., Shomov, A. I., Makeev, P. V. (2020). Aerodynamic Design of Pusher Propeller for a Promising Rotorcraft. Russian Aeronautics, 63 (2), 283–289. doi: https://doi.org/10.3103/s1068799820020130
Design of the parametric appearance of the power plant for modifications of the regional passenger aircraft An-158

Downloads

Published

2023-08-31

How to Cite

Loginov, V., Ukrainets, Y., Humennyi, A., Yelans’ky, O., Konyshev, D., Spirkin, Y., & Bezdielnyi, V. (2023). Design of the parametric appearance of the power plant for modifications of the regional passenger aircraft An-158 . Eastern-European Journal of Enterprise Technologies, 4(1 (124), 35–52. https://doi.org/10.15587/1729-4061.2023.284806

Issue

Section

Engineering technological systems