Identifying the influence of blade number and angle of attack on a breastshot type waterwheel micro hydroelectric power generator using ANOVA

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.286040

Keywords:

breastshot waterwheel, ANOVA analysis, blade number, angle of attack

Abstract

This study focuses on optimizing the performance of micro-hydro power generation, specifically the breastshot type waterwheel. The limited availability of non-renewable energy sources and the high cost of developing renewable energy sources in the energy sector pose challenges, making it essential to find new energy sources and improve energy efficiency. The 2004–2022 national electricity plan aims to increase electricity access in rural areas, including remote regions like Bogor Regency, where access to electricity is limited. Many residents have constructed their own micro hydroelectric power generators, but their vulnerability to natural disasters is a concern. The study investigates the potential of breastshot waterwheel technology for micro hydroelectric power generation.

The study involved testing a micro hydro power plant with 6, 8, and 10 blades and blade angles of 0°, 30°, and 45°. The current research focuses on performance optimization, including the use of ANOVA analysis to know the significant impact of blade number and angle on the waterwheel’s rotation.

The maximum rotational speed was achieved with 10 blades and an angle of attack of 0°, 30°, and 45°, with respective speeds of 153.59 RPM, 155.84 RPM, and 164.95 RPM. The study indicates that the higher the number and angle of attack of blades, the greater the rotation of the breastshot type waterwheel. ANOVA tests showed that the number of blades had a significant impact on the waterwheel’s rotation, with an F-test value of 6.32 and a p-value of 0.012. On the other hand, the angle of attack of the blade had no significant impact, with an F-test value of 3.20 and a p-value of 0.067

Supporting Agency

  • Authors would like to thank to Pusat Penelitian dan Pengabdian Masyarakat, Politeknik Negeri Jakarta, Indonesia for funding this research through Hibah PIT.

Author Biographies

Adi Syuriadi, Politeknik Negeri Jakarta; Universitas Indonesia

Master of Engineering, Lecturer

Department of Mechanical Engineering

Ahmad Indra Siswantara, Universitas Indonesia

Doctor of Engineering, Lecturer

Department of Mechanical Engineering

Dewin Purnama, Politeknik Negeri Jakarta

Doctor of Metallurgy and Material Engineering, Assistance Professor

Department of Mechanical Engineering

Gun Gun Ramdlan Gunadi, Politeknik Negeri Jakarta

Doctor of Mechanical Engineering

Department of Mechanical Engineering

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Sulaksana Permana, Gunadarma University; Universitas Indonesia

Doctor of Engineering in Metallurgy and Materials

Department of Mechanical Engineering

Laboratory of Prof. Dr. Ir. Johny Wahyuadi S., DEA

Department of Metallurgy and Materials

References

  1. Li, Y., Wu, Z., Dinçer, H., Kalkavan, H., Yüksel, S. (2021). Analyzing TRIZ-based strategic priorities of customer expectations for renewable energy investments with interval type-2 fuzzy modeling. Energy Reports, 7, 95–108. doi: https://doi.org/10.1016/j.egyr.2020.11.167
  2. Suriani, S., Keusuma, C. N. (2015). Pengaruh pembangunan infrastruktur dasar terhadap pertumbuhan ekonomi di Indonesia. Ecosains: Jurnal Ilmiah Ekonomi Dan Pembangunan, 4 (1), 1. doi: https://doi.org/10.24036/ecosains.10962757.00
  3. Syuriadi, A., Rg, G. G. (2011). Studi Kelayakan Pembangunan Pembangkit Listrik Tenaga Mikro Hidro Di Kawasan Danau UI. Jurnal Poli-Teknologi, 10 (3). Available at: https://jurnal.pnj.ac.id/index.php/politeknologi/article/view/67
  4. Hameed, J. A., Saeed, A. T., Rajab, M. H. (2018). Design and analysis of hydroelectric generation using waterwheel. 2018 9th International Renewable Energy Congress (IREC). doi: https://doi.org/10.1109/irec.2018.8362443
  5. Yassen, S. R. (2014). Optimization of the performance of micro hydro-turbines for electricity generation. Available at: https://core.ac.uk/download/pdf/29840822.pdf
  6. Asrafi, I., Yerizam, M., Effendi, S., Mataram, A. (2019). Micro Hydro Electric Power Plant (MHEP) Prototype A Study Of The Effect Of Blade Numbers Toward Turbine Rotational Velocity. Journal of Physics: Conference Series, 1198 (4), 042001. doi: https://doi.org/10.1088/1742-6596/1198/4/042001
  7. Edeoja, A. O., Edeoja, J. A., Ogboji, M. E. (2017). Effect of the included angle of v-shaped blade on the performance of a simplified Pico-hydro system. International Journal of Scientific & Engineering Research, 8 (8), 1208–1213. Available at: https://www.ijser.org/researchpaper/Effect-of-the-Included-Angle-of-V-Shaped-Blade-on-the-Performance-of-a-Simplified-Pico-Hydro-System.pdf
  8. Khan, T., Asif, M. M., Ahmed, H., Islam, M., Harun, Z. (2021). Design and Development of a Vortex Turbine for the Hilly Regions of Bangladesh. Advances in Engineering Research. doi: https://doi.org/10.2991/aer.k.211106.046
  9. Zaman, A. Khan, T. (2012). Design of a water wheel for a low head micro hydropower system. Journal Basic Science And Technology, 1 (3), 1–6. Available at: https://www.researchgate.net/publication/267958992_Design_of_a_Water_Wheel_For_a_Low_Head_Micro_Hydropower_System
  10. Syahputra, R., Soesanti, I. (2021). Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports, 7, 472–490. doi: https://doi.org/10.1016/j.egyr.2021.01.015
  11. Syarif, A. (2017). Rancang bangun prototipe pembangkit listrik tenaga mikro hidro (pltmh) turbin pelton. Kinetika, 8 (2), 1–6. Available at: https://jurnal.polsri.ac.id/index.php/kimia/article/view/1209
  12. Saputra, I. W. B., Weking, A. I., Jasa, L. (2017). Rancang Bangun Pemodelan Pembangkit Listrik Tenaga Mikro Hidro (Pltmh) Menggunakan Kincir Overshot Wheel. Majalah Ilmiah Teknologi Elektro, 16 (2), 48. doi: https://doi.org/10.24843/mite.2017.v16i02p09
  13. Nadhief, M. I., Prabowoputra, D. M., Hadi, S., Tjahjana, D. D. D. P. (2020). Experimental Study on the Effect of Variation of Blade Arc Angle to the Performance of Savonius Water Turbine Flow in Pipe. International Journal of Mechanical Engineering and Robotics Research, 9 (5), 779–783. doi: https://doi.org/10.18178/ijmerr.9.5.779-783
  14. Gallego, E., Rubio-Clemente, A., Pineda, J., Velásquez, L., Chica, E. (2021). Experimental analysis on the performance of a pico-hydro Turgo turbine. Journal of King Saud University - Engineering Sciences, 33 (4), 266–275. doi: https://doi.org/10.1016/j.jksues.2020.04.011
  15. Achebe, C. H., Okafor, O. C., Obika, E. N. (2020). Design and implementation of a crossflow turbine for Pico hydropower electricity generation. Heliyon, 6 (7), e04523. doi: https://doi.org/10.1016/j.heliyon.2020.e04523
  16. Karre, R. K., Srinivas, K., Mannan, K., Prashanth, B., Prasad, Ch. R. (2022). A review on hydro power plants and turbines. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0081709
  17. Warjito, Adanta, D., Budiarso, Prakoso, A. P. (2018). The effect of bucketnumber on breastshot waterwheel performance. IOP Conference Series: Earth and Environmental Science, 105, 012031. doi: https://doi.org/10.1088/1755-1315/105/1/012031
  18. Rocha, P. A. C., Carneiro de Araujo, J. W., Lima, R. J. P., Vieira da Silva, M. E., Albiero, D., de Andrade, C. F., Carneiro, F. O. M. (2018). The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments. Energy, 148, 169–178. doi: https://doi.org/10.1016/j.energy.2018.01.096
  19. Gopalakrishnan, B., Saravana Kumar, G., Prakash, K. A. (2023). Parametric analysis and optimization of gas-particle flow through axial cyclone separator: A numerical study. Advanced Powder Technology, 34 (2), 103959. doi: https://doi.org/10.1016/j.apt.2023.103959
  20. Romaito, P., Safitri, I., Sarida, H., Nisah, H., Uswatun, Hasanah et al. (2021). The Mathematics Learning using Geogebra Software to Improve Students’ CreativeThinking Ability. Journal of Physics: Conference Series, 1819 (1), 012008. doi: https://doi.org/10.1088/1742-6596/1819/1/012008
  21. Ayu Permanasari, A., Sukarni, Puspitasari, P., Budi Utama, S., Ainul Yaqin, F. (2019). Experimental Investigation and Optimization of Floating Blade Water Wheel Turbine Performance Using Taguchi Method and Analysis of Variance (ANOVA). IOP Conference Series: Materials Science and Engineering, 515, 012086. doi: https://doi.org/10.1088/1757-899x/515/1/012086
  22. Lillahulhaq, Z., Sandy, F. D., Mahardika, B. P., Akbar, M. A., Saragih, D. B. (2022). Experimental study of small hydro turbine propeller performance with a variety of blade angles of attack. SINERGI, 26 (3), 273. doi: https://doi.org/10.22441/sinergi.2022.3.001
Identifying the influence of blade number and angle of attack on a breastshot type waterwheel micro hydroelectric power generator using ANOVA

Downloads

Published

2023-08-31

How to Cite

Syuriadi, A., Siswantara, A. I., Purnama, D., Gunadi, G. G. R., Susanto, I., & Permana, S. (2023). Identifying the influence of blade number and angle of attack on a breastshot type waterwheel micro hydroelectric power generator using ANOVA. Eastern-European Journal of Enterprise Technologies, 4(8 (124), 26–31. https://doi.org/10.15587/1729-4061.2023.286040

Issue

Section

Energy-saving technologies and equipment