Deformation features of trunk pipelines with composite linings under static loads

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.287025

Keywords:

steel pipeline, pipe reinforcement, carbon fiber reinforced plastic bandage, finite element analysis

Abstract

This paper considers the deformation process of a typical section of a steel trunk pipeline with a defective zone, strengthened with a carbon fiber composite lining, under the influence of stationary internal pressure. Defects in the form of thinning of the pipe thickness and cracks were investigated. The stressed-strained state of the structure at critical pressure was analyzed. The thickness of the composite lining was determined, at which the bandage compensates for the effect of internal pressure on the damaged section of the pipeline. Research was carried out numerically based on finite element modeling in the ANSYS software package.

When studying the stressed-strained state of a pipe with a defect of an arbitrary complex shape under the influence of critical pressure, a compensating value was obtained. The result showed that a carbon fiber lining with a thickness of 17 % of the rated thickness of the pipe could completely compensate for the effects of internal pressure in the defect area. In this case, the stresses in the carbon fiber lining were close to minimal. When studying the stressed-strained state of a pipe with a large crack of arbitrary shape at critical pressure, a compensating value was also obtained.

It has been established that to compensate for the concentration of internal pressure in the crack zone, the thickness of the composite lining should be at the level of 34 % of the rated thickness of the pipe. In this case, the deformation of the steel pipe in the area of the crack occurs in the elastic region. The exception is the crack tips, where plastic deformations are observed, and stresses arise up to 93 % of the ultimate strength of the pipe steel. At the same time, the stresses in the carbon fiber lining remain close to minimal. Thus, it is recommended to use carbon fiber linings with a thickness of 17 % or more of the rated pipe thickness to bandage damage constituting up to 75 % of the thickness of a steel pipe. To bandage cracks, it is recommended to use carbon fiber linings with a thickness of at least 34 % of the rated pipe thickness

Author Biographies

Arman Moldagaliyev, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Mechanics and Mechanical Engineering

Nurlan Zhangabay, Mukhtar Auezov South Kazakhstan University

PhD, Associate Professor

Department of Construction and Construction Materials

Ulanbator Suleimenov, Shymkent University

Doctor of Technical Sciences, Professor

Department of Construction

Konstantin Avramov, A. Pidhornyi Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine

Doctor of Technical Sciences, Professor, Ukraine State price in Science and Engineering Winner, Academician of Ukraine Engineering Academy, Head of Department

Department of Reliability and Dynamic Strength

Talzhan Raimberdiyev, Peoples' Friendship University named after Academician A. Kuatbekov

Doctor of Technical Sciences, Professor

Vice-Rector for Scientific and Innovative Work

Maryna Chernobryvko, A. Pidhornyi Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine

Doctor of Technical Sciences

Department of Reliability and Dynamic Strength

Altynsary Umbitaliyev, Shymkent University

Doctor in Economics, Professor

Department of Economics

Atogali Jumabayev, L.N. Gumilyov Eurasian National University

Doctor of Technical Sciences, Associate Professor

Department of Construction

Shairbek Yeshimbetov, Tol Kurylys LLP

Doctor of Technical Sciences

Director

References

  1. Vishnuvardhan, S., Murthy, A. R., Choudhary, A. (2023). A review on pipeline failures, defects in pipelines and their assessment and fatigue life prediction methods. International Journal of Pressure Vessels and Piping, 201, 104853. doi: https://doi.org/10.1016/j.ijpvp.2022.104853
  2. Suleimenov, U., Zhangabay, N., Abshenov, K., Utelbayeva, A., Imanaliyev, K., Mussayeva, S. et al. (2022). Estimating the stressed-strained state of the vertical mounting joint of the cylindrical tank wall taking into consideration imperfections. Eastern-European Journal of Enterprise Technologies, 3 (7 (117)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.258118
  3. Muda, M. F., Mohd Hashim, M. H., Kamarudin, M. K., Mohd, M. H., Tafsirojjaman, T., Rahman, M. A., Paik, J. K. (2022). Burst pressure strength of corroded subsea pipelines repaired with composite fiber-reinforced polymer patches. Engineering Failure Analysis, 136, 106204. doi: https://doi.org/10.1016/j.engfailanal.2022.106204
  4. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. et al. (2022). Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15587/1729-4061.2022.254218
  5. Reis, J. M. L., Menezes, E. M., da Costa Mattos, H. S., Carbas, R. J. C., Marques, E. A., Silva, L. F. M. (2023). Strength of dissimilar adhesively bonded DCB joints and its connection with the failure pressure of composite repair systems. Composite Structures, 304, 116441. doi: https://doi.org/10.1016/j.compstruct.2022.116441
  6. Avramov, K. V., Uspensky, B. V., Derevyanko, I. I., Degtyaryov, M. O., Polishchuk, O. F., Chernobryvko, M. V. (2023). Dynamic properties of nanocomposite and three-layer thin-walled aerospace elements manufactured by additive technologies. Kosmìčna Nauka ì Tehnologìâ, 29 (1), 52–64. doi: https://doi.org/10.15407/knit2023.01.052
  7. Zhao, J., Lv, Y.-R., Cheng, Y. F. (2022). Standards and methods for dent assessment and failure prediction of pipelines: A critical review. Petroleum Science, 19 (6), 3029–3045. doi: https://doi.org/10.1016/j.petsci.2022.10.003
  8. Kec, J., Cerny, I. (2017). Stress-strain assessment of dents in wall of high pressure gas pipeline. Procedia Structural Integrity, 5, 340–346. doi: https://doi.org/10.1016/j.prostr.2017.07.180
  9. Zhao, P., Shuai, J., Sun, M., Lv, Z., Xu, K., Wang, Y. (2021). Burst pressure of thin-walled pipes with dent and gouge defects. Thin-Walled Structures, 159, 107213. doi: https://doi.org/10.1016/j.tws.2020.107213
  10. He, Z., Zhou, W. (2021). Fatigue reliability analysis of dented pipelines. Journal of Pipeline Science and Engineering, 1 (3), 290–297. doi: https://doi.org/10.1016/j.jpse.2021.08.004
  11. Shirazi, H., Eadie, R., Chen, W. (2023). A review on current understanding of pipeline circumferential stress corrosion cracking in near-neutral PH environment. Engineering Failure Analysis, 148, 107215. doi: https://doi.org/10.1016/j.engfailanal.2023.107215
  12. Niazi, H., Eadie, R., Chen, W., Zhang, H. (2021). High pH stress corrosion cracking initiation and crack evolution in buried steel pipelines: A review. Engineering Failure Analysis, 120, 105013. doi: https://doi.org/10.1016/j.engfailanal.2020.105013
  13. Qin, G., Cheng, Y. F. (2021). A review on defect assessment of pipelines: Principles, numerical solutions, and applications. International Journal of Pressure Vessels and Piping, 191, 104329. doi: https://doi.org/10.1016/j.ijpvp.2021.104329
  14. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Kambarov, M., Abildabekov, A. et al. (2023). Oscillation frequencies of the reinforced wall of a steel vertical cylindrical tank for petroleum products depending on winding pre-tension. Eastern-European Journal of Enterprise Technologies, 3 (7 (123)), 14–25. doi: https://doi.org/10.15587/1729-4061.2023.279098
  15. Altenbach, H., Breslavsky, D., Chernobryvko, M., Senko, A., Tatarinova, O. (2022). Fast Fracture of Conic Shell Under the Action of Belt Explosive Charge. Advances in Mechanical and Power Engineering, 366–376. doi: https://doi.org/10.1007/978-3-031-18487-1_37
  16. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobryvko, M., Suleimenov, U., Utelbayeva, A. (2022). Influence of the parameters of the pre-stressed winding on the oscillations of vertical cylindrical steel oil tanks. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.265107
  17. Tursunkululy, T., Zhangabay, N., Suleimenov, U., Abshenov, K., Utelbayeva, A., Moldagaliyev, A. et al. (2023). Analysis of strength and eigenfrequencies of a steel vertical cylindrical tank without liquid, reinforced by a plain composite thread. Case Studies in Construction Materials, 18, e02019. doi: https://doi.org/10.1016/j.cscm.2023.e02019
  18. Chernobryvko, M. V., Avramov, K. V., Romanenko, V. N., Batutina, T. J., Suleimenov, U. S. (2015). Dynamic instability of ring-stiffened conical thin-walled rocket fairing in supersonic gas stream. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230 (1), 55–68. doi: https://doi.org/10.1177/0954406215592171
  19. Chernobryvko, M. V., Avramov, K. V., Romanenko, V. N., Batutina, T. J., Tonkonogenko, A. M. (2014). Free linear vibrations of thin axisymmetric parabolic shells. Meccanica, 49 (12), 2839–2845. doi: https://doi.org/10.1007/s11012-014-0027-6
  20. Alabtah, F. G., Mahdi, E., Eliyan, F. F. (2021). The use of fiber reinforced polymeric composites in pipelines: A review. Composite Structures, 276, 114595. doi: https://doi.org/10.1016/j.compstruct.2021.114595
  21. Lim, K. S., Azraai, S. N. A., Noor, N. M., Yahaya, N. (2016). An Overview of Corroded Pipe Repair Techniques Using Composite Materials. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 10 (1), 19–25. doi: https://doi.org/10.5281/zenodo.1110684
  22. Dong, C. (2021). Flexural behaviour of carbon and glass reinforced hybrid composite pipes. Composites Part C: Open Access, 4, 100090. doi: https://doi.org/10.1016/j.jcomc.2020.100090
  23. Kong, D., Huang, X., Xin, M., Xian, G. (2020). Effects of defect dimensions and putty properties on the burst performances of steel pipes wrapped with CFRP composites. International Journal of Pressure Vessels and Piping, 186, 104139. doi: https://doi.org/10.1016/j.ijpvp.2020.104139
  24. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. N. M., Moldagaliyev, A., Abshenov, K. et al. (2021). Determining the features of oscillations in prestressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15587/1729-4061.2021.246751
  25. Ibraimova, U., Zhangabay, N., Tursunkululy, T., Rakhimov, M., Dossybekov, S., Kolesnikov, A. et al. (2023). Development of method for calculation of pre-strained steel cylindrical sheaths in view of the winding angle, pitch and thickness. Case Studies in Construction Materials, 19, e02233. doi: https://doi.org/10.1016/j.cscm.2023.e02233
  26. Zhangabay, N., Sapargaliyeva, B., Utelbayeva, A., Kolesnikov, A., Aldiyarov, Z., Dossybekov, S. et al. (2022). Experimental Analysis of the Stress State of a Prestressed Cylindrical Shell with Various Structural Parameters. Materials, 15 (14), 4996. doi: https://doi.org/10.3390/ma15144996
  27. SP RK EN 1998-4:2006/2012. Proektirovanie seysmostoykikh konstruktsiy. Chast' 4. Bunkery, rezervuary i truboprovody. Available at: https://online.zakon.kz/Document/?doc_id=37105813&doc_id2=37807474#activate_doc=2&pos=1;-0.0999908447265625&pos2=3;-100.09999084472656
  28. SP RK EN 1993-4-3:2007/2011. Proektirovanie stal'nykh konstruktsiy. Ch. 4-3. Truboprovody. Available at: https://online.zakon.kz/Document/?doc_id=34586480
  29. EN 1998-4 (2006) (English): Eurocode 8: Design of structures for earthquake resistance – Part 4: Silos, tanks and pipelines. Available at: https://www.phd.eng.br/wp-content/uploads/2014/12/en.1998.4.2006.pdf
  30. EN 1993-1-8 (2005) (English): Eurocode 3: Design of steel structures - Part 1-8: Design of joints. Available at: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.8.2005-1.pdf
  31. Tekhnicheskie usloviya na truby dlya truboprovodov. API Spec. 5L. Available at: https://buy-pipe.com/home/structure/item_214/955b42b7590d39be6f4d268afcd0a015.pdf
  32. SP 284.1325800.2016. Truboprovody promyslovye dlya nefti i gaza. Pravila proektirovaniya i proizvodstvo rabot. Available at: https://files.stroyinf.ru/Data2/1/4293742/4293742910.pdf
  33. ASME 831G-1991. Manual for Determining the Remaining Strength of Corroded Pipelines. Available at: https://law.resource.org/pub/us/cfr/ibr/002/asme.b31g.1991.pdf
  34. ASME B31.8-2003. Gas Transmission and Distribution, Piping Systems. Available at: https://law.resource.org/pub/us/cfr/ibr/002/asme.b31.8.2003.pdf
  35. Derevianko, I., Uspensky, B., Avramov, K., Salenko, A., Maksymenko-Sheiko, K. (2022). Experimental and numerical analysis of mechanical characteristics of fused deposition processed honeycomb fabricated from PLA or ULTEM 9085. Journal of Sandwich Structures & Materials, 25 (2), 264–283. doi: https://doi.org/10.1177/10996362221137292
  36. Barbero, E. J. (2013). Finite Element Analysis of Composite Materials Using Ansys. CRC Press, 366. doi: https://doi.org/10.1201/b16295
Deformation features of trunk pipelines with composite linings under static loads

Downloads

Published

2023-10-31

How to Cite

Moldagaliyev, A., Zhangabay, N., Suleimenov, U., Avramov, K., Raimberdiyev, T., Chernobryvko, M., Umbitaliyev, A., Jumabayev, A., & Yeshimbetov, S. (2023). Deformation features of trunk pipelines with composite linings under static loads. Eastern-European Journal of Enterprise Technologies, 5(7 (125), 34–42. https://doi.org/10.15587/1729-4061.2023.287025

Issue

Section

Applied mechanics