Establishing the regularities of blending functional purpose juices based on watermelon juice

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.288226

Keywords:

melon crops, watermelon juice, rosehip juice, processing of melons, juice blending

Abstract

The objects of the research are fruit and berry juices from watermelon, rosehip, apples and pumpkin. The influence of the physico-chemical parameters of fruit and berry juices on the process of storage and blending is investigated. It has been found that quantitative regulation depending on the physico-chemical parameters of fruit and berry juices during the development of blended juice technology makes it possible to develop a drink with a long shelf life. The developed juices should satisfy the body's needs for vitamins and minerals in food necessary for the normal development of the body. Based on research, watermelon-pumpkin-rosehip juice is recommended.

However, the consumer properties of natural juices depend on the variety and climatic conditions of growth. The climatic conditions of growth and the variety significantly affect the physico-chemical parameters of the juices obtained from them. All this allows us to assert that it is advisable to conduct a study devoted to establishing the influence of the physico-chemical parameters of fruit and berry juices based on watermelon juice on the process of storage and blending.

Juices are the most technologically advanced product for creating new types of functional nutrition. In addition, they contain a complex of vitamins and minerals in their composition.

In connection with the above, the development of technology and the organization of the production of functional purpose juices are the solution to problems related to nutrition.

It is found that the resulting new product – watermelon-pumpkin-rosehip drink will allow you to get a new product with high quality indicators and expand the range of fruit and berry drinks based on watermelon juice

Author Biographies

Gulzhan Zhumaliyeva, Kazakh Research Institute of Processing and Food Industry

Candidate of Technical Sciences, Head of Laboratory

Laboratory of Processing of Livestock Products

Urishbai Chomanov, National Academy of Sciences of the Republic of Kazakhstan; Kazakh Research Institute of Processing and Food Industry

Doctor of Technical Sciences, Professor, Academician

Laboratory of Processing and Storage of Livestock Products

Head of Laboratory

Laboratory of Technologies of Processing and Storage of Animal Products

Mukhtar Tultabayev, Kazakh University of Technology and Business

Department of Technology and Standardization

Gulnara Aktokalova, Kazakh Research Institute of Processing and Food Industry

Senior Researcher

Department of Processing of Livestock Products

Tamara Tultabayevа, Kazakh University of Technology and Business

Рrofessor

Department of Food Technology and Processing Product

Gulmira Kenenbay, Kazakh Research Institute of Processing and Food Industry

Candidate of Technical Sciences

Laboratory of Technologies of Processing and Storage of Animal Products

Rabiga Kasymbek, Kazakh Research Institute of Processing and Food Industry

Doctoral Student, Senior Researcher

Department of Processing of Livestock Products

Nurzhan Tultabayev, Kazakh Research Institute of Processing and Food Industry

PhD Student, Senior Researcher

Laboratory of Processing and Storage of Livestock Products

References

  1. Lucier, B., Lin, B.-H. (2001). Factors affecting watermelon consumption in the United States. Department of Agriculture-Economic Research Service, USDA.
  2. ,5 млн тонн зерна намолочено в Казахстане – МСХ. Available at: https://vlast.kz/novosti/35071-55-mln-tonn-zerna-namoloceno-v-kazahstane-msh.html
  3. Tultabayev, M., Chomanov, U., Tultabayeva, T., Shoman, A., Dodaev, K., Azimov, U., Zhumanova, U. (2022). Identifying patterns in the fatty-acid composition of safflower depending on agroclimatic conditions. Eastern-European Journal of Enterprise Technologies, 2 (11 (116)), 23–28. doi: https://doi.org/10.15587/1729-4061.2022.255336
  4. Tultabayeva, T. C., Chomanov, U. C., Tultabayev, M. C., Zhumaliyeva, G. E., Kenenbay, G. S., Shoman, A. Y., Shoman, A. K. (2022). Synthesis, Characterization and Physical Properties of Polyunsaturated Fatty Acids and Co Zero-Valent Nanoparticles/Polyunsaturated Fatty Acids. Journal of Nanostructures, 12 (4), 1049–1058. Available at: https://jns.kashanu.ac.ir/article_111939.html
  5. Liu, W., Zhao, S., Cheng, Z., Wan, X., Yan, Z., King, S. R. (2010). Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Horticulturae, 871, 543–550. doi: https://doi.org/10.17660/actahortic.2010.871.75
  6. Shi, F., Wang, L., Li, S. (2023). Enhancement in the physicochemical properties, antioxidant activity, volatile compounds, and non-volatile compounds of watermelon juices through Lactobacillus plantarum JHT78 fermentation. Food Chemistry, 420, 136146. doi: https://doi.org/10.1016/j.foodchem.2023.136146
  7. Mandha, J., Shumoy, H., Devaere, J., Schouteten, J. J., Gellynck, X., de Winne, A. et al. (2021). Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Food Chemistry, 358, 129809. doi: https://doi.org/10.1016/j.foodchem.2021.129809
  8. Dogan, K., Akman, P. K., Tornuk, F. (2021). Role of non‐thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice. Journal of the Science of Food and Agriculture, 101 (11), 4779–4788. doi: https://doi.org/10.1002/jsfa.11124
  9. Ricci, A., Cirlini, M., Levante, A., Dall’Asta, C., Galaverna, G., Lazzi, C. (2018). Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Research International, 105, 412–422. doi: https://doi.org/10.1016/j.foodres.2017.11.042
  10. Rodríguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C. et al. (2009). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132 (2-3), 79–90. doi: https://doi.org/10.1016/j.ijfoodmicro.2009.03.025
  11. Liu, Y., He, C., Song, H. (2018). Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Research International, 107, 119–129. doi: https://doi.org/10.1016/j.foodres.2018.02.022
  12. Yang, F., Shi, C., Yan, L., Xu, Y., Dai, Y., Bi, S., Liu, Y. (2022). Low-frequency ultrasonic treatment: A potential strategy to improve the flavor of fresh watermelon juice. Ultrasonics Sonochemistry, 91, 106238. doi: https://doi.org/10.1016/j.ultsonch.2022.106238
  13. Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44 (5), 1168–1173. doi: https://doi.org/10.1016/j.foodres.2010.07.005
  14. Al-Sayed, H. M. A., Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58 (1), 83–95. doi: https://doi.org/10.1016/j.aoas.2013.01.012
  15. Mendoza-Enano, M. L., Stanley, R., Frank, D. (2019). Linking consumer sensory acceptability to volatile composition for improved shelf-life: A case study of fresh-cut watermelon (Citrullus lanatus). Postharvest Biology and Technology, 154, 137–147. doi: https://doi.org/10.1016/j.postharvbio.2019.03.018
  16. Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. Journal of Food Measurement and Characterization, 14 (3), 1417–1426. doi: https://doi.org/10.1007/s11694-020-00391-7
  17. Liu, Y., He, C., Song, H. (2018). Comparison of SPME Versus SAFE Processes for the Analysis of Flavor Compounds in Watermelon Juice. Food Analytical Methods, 11 (6), 1677–1689. doi: https://doi.org/10.1007/s12161-018-1153-x
  18. Perkins-Veazie, P., K. Collins, J., Clevidence, B. (2007). Watermelons and health. Acta Horticulturae, 731, 121–128. doi: https://doi.org/10.17660/actahortic.2007.731.17
  19. Beaulieu, J. C., Lea, J. M. (2006). Characterization and Semiquantitative Analysis of Volatiles in Seedless Watermelon Varieties Using Solid-Phase Microextraction. Journal of Agricultural and Food Chemistry, 54 (20), 7789–7793. doi: https://doi.org/10.1021/jf060663l
  20. Aguiló-Aguayo, I., Montero-Calderón, M., Soliva-Fortuny, R., Martín-Belloso, O. (2010). Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. Journal of Food Engineering, 100 (1), 43–49. doi: https://doi.org/10.1016/j.jfoodeng.2010.03.025
  21. Dima, G., Tripodi, G., Condurso, C., Verzera, A. (2014). Volatile constituents of mini-watermelon fruits. Journal of Essential Oil Research, 26 (5), 323–327. doi: https://doi.org/10.1080/10412905.2014.933449
  22. Fredes, A., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-de-Castro, A., Gisbert, C., Picó, M. B. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 97 (5), 1646–1655. doi: https://doi.org/10.1002/jsfa.7915
  23. Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S. et al. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12 (3), 169–196. doi: https://doi.org/10.1006/jfca.1999.0827
  24. Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A. et al. (2005). Not just colors – carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science & Technology, 16 (9), 407–415. doi: https://doi.org/10.1016/j.tifs.2005.04.004
  25. Pino, J. A., Marbot, R., Aguero, J. (2003). Volatile Components of Watermelon (Citrullus Ianatus[Thunb.] Matsum. et Nakai) Fruit. Journal of Essential Oil Research, 15 (6), 379–380. doi: https://doi.org/10.1080/10412905.2003.9698616
  26. Saftner, R., Luo, Y., McEvoy, J., Abbott, J. A., Vinyard, B. (2007). Quality characteristics of fresh-cut watermelon slices from non-treated and 1-methylcyclopropene- and/or ethylene-treated whole fruit. Postharvest Biology and Technology, 44 (1), 71–79. doi: https://doi.org/10.1016/j.postharvbio.2006.11.002
  27. Xisto, A. L. R. P., Boas, E. V. de B. V., Nunes, E. E., Federal, B. M. V. B., Guerreiro, M. C. (2012). Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Food Science and Technology, 32 (1), 173–178. doi: https://doi.org/10.1590/s0101-20612012005000020
  28. Yajima, I., Sakakibara, H., Ide, J., Yanai, T., Kazuo, H. (1985). Volatile Flavor Components of Watermelon (Citrullus vulgaris). Agricultural and Biological Chemistry, 49 (11), 3145–3150. doi: https://doi.org/10.1080/00021369.1985.10867246
  29. Fukushige, H., Hildebrand, D. F. (2005). Watermelon (Citrullus lanatus) Hydroperoxide Lyase Greatly Increases C6 Aldehyde Formation in Transgenic Leaves. Journal of Agricultural and Food Chemistry, 53 (6), 2046–2051. doi: https://doi.org/10.1021/jf048391e
  30. Schwab, W. (2007). Genetic Engineering of Plants and Microbial Cells for Flavour Production. Flavours and Fragrances, 615–628. doi: https://doi.org/10.1007/978-3-540-49339-6_26
  31. Pereira, J. A. M., Berenguer, C. V., Andrade, C. F. P., Câmara, J. S. (2022). Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. Applied Sciences, 12 (5), 2747. doi: https://doi.org/10.3390/app12052747
  32. Du, X., Davila, M., Ramirez, J., Williams, C. (2022). Free Amino Acids and Volatile Aroma Compounds in Watermelon Rind, Flesh, and Three Rind-Flesh Juices. Molecules, 27 (8), 2536. doi: https://doi.org/10.3390/molecules27082536
  33. Pat. No. CN101690600A. Is a composite drink made from watermelon juice and a method of its preparation. Available at: https://patents.google.com/patent/CN101690600A/en/
  34. Nkoana, D. K., Mashilo, J., Shimelis, H., Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A Review. South African Journal of Botany, 145, 65–77. doi: https://doi.org/10.1016/j.sajb.2020.12.008
  35. Maletti, L., D’Eusanio, V., Lancellotti, L., Marchetti, A., Pincelli, L., Strani, L., Tassi, L. (2022). Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. Future Foods, 6, 100182. doi: https://doi.org/10.1016/j.fufo.2022.100182
  36. Volino-Souza, M., Oliveira, G. V., Vargas, R., Tavares, A. C., Conte-Junior, C. A., Alvares, T. da S. (2022). Effect of microencapsulated watermelon (Citrullus lanatus) intake on plasma amino acids and glycemic response in healthy adults. Food Bioscience, 46, 101553. doi: https://doi.org/10.1016/j.fbio.2022.101553
  37. Cano-Lamadrid, M., Artés-Hernández, F. (2021). By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods, 11 (1), 59. doi: https://doi.org/10.3390/foods11010059
  38. Aguayo, E., Martínez-Sánchez, A., Fernández-Lobato, B., Alacid, F. (2021). L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Applied Sciences, 11 (7), 3293. doi: https://doi.org/10.3390/app11073293
  39. Martínez, C., Valenzuela, J. L., Jamilena, M. (2021). Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants, 10 (6), 894. doi: https://doi.org/10.3390/antiox10060894
  40. Zhumaliyeva, G., Chomanov, U., Tultabaeva, T., Tultabayev, M., Kasymbek, R. (2020). Formation of Processes of Intensification of Crop Growth For The Formation of Business Structures. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.4128701
  41. Wu, K., Lou, J., Li, C., Li, J. (2021). Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons. Agriculture, 11 (8), 736. doi: https://doi.org/10.3390/agriculture11080736
  42. Sorokina, M., McCaffrey, K. S., Deaton, E. E., Ma, G., Ordovás, J. M., Perkins-Veazie, P. M. et al. (2021). A Catalog of Natural Products Occurring in Watermelon – Citrullus lanatus. Frontiers in Nutrition, 8. doi: https://doi.org/10.3389/fnut.2021.729822
  43. Yang, F., Chen, E., Dai, Y., Xu, Y., Liu, Y., Bi, S. (2022). Elucidation of the interaction between fructose and key aroma compounds in watermelon juice via Raman spectroscopy and nuclear magnetic resonance. Food Research International, 159, 111613. doi: https://doi.org/10.1016/j.foodres.2022.111613
  44. Perkins-Veazie, P., Collins, J. K. (2004). Flesh quality and lycopene stability of fresh-cut watermelon. Postharvest Biology and Technology, 31 (2), 159–166. doi: https://doi.org/10.1016/j.postharvbio.2003.08.005
  45. Davis, A. R., Fish, W. W., Perkins-Veazie, P. (2003). A Rapid Hexane-free Method for Analyzing Lycopene Content in Watermelon. Journal of Food Science, 68 (1), 328–332. doi: https://doi.org/10.1111/j.1365-2621.2003.tb14160.x
  46. Fonseca, J. M. et al. (1999). Shock and vibration forces influence the quality of fresh-cut watermelon. Proc. Fla. State Hort.
  47. Doan, H. V., Hoseinifar, S. H., Naraballobh, W., Paolucci, M., Wongmaneeprateep, S., Charoenwattanasak, S. et al. (2021). Dietary inclusion of watermelon rind powder and Lactobacillus plantarum: Effects on Nile tilapia's growth, skin mucus and serum immunities, and disease resistance. Fish & Shellfish Immunology, 116, 107–114.
  48. Burton-Freeman, B., Freeman, M., Zhang, X., Sandhu, A., Edirisinghe, I. (2021). Watermelon and l-Citrulline in Cardio-Metabolic Health: Review of the Evidence 2000–2020. Current Atherosclerosis Reports, 23 (12). doi: https://doi.org/10.1007/s11883-021-00978-5
  49. Ramirez, J. L., Juma, S., Du, X. (2021). Consumer acceptance of watermelon flesh‐rind blends and the effect of rind on refreshing perception. Journal of Food Science, 86 (4), 1384–1392. doi: https://doi.org/10.1111/1750-3841.15648
  50. Kumar, V., Jain, S. K., Amitabh, A., Chavan, S. M. (2021). Effect of ohmic heating on physicochemical, bioactive compounds, and shelf life of watermelon flesh‐rind drinks. Journal of Food Process Engineering, 45 (7). doi: https://doi.org/10.1111/jfpe.13818
  51. Pravallika, K., Chakraborty, S. (2022). Effect of nonthermal technologies on the shelf life of fruits and their products: A review on the recent trends. Applied Food Research, 2 (2), 100229. doi: https://doi.org/10.1016/j.afres.2022.100229
  52. Tultabayeva, Т. Ch., Zhumanova, U. T., Tultabayev, M. Ch., Shoman, А. Ye., Shoman, A. K. (2023). The research of technological drying modes of combined fermented milk protein products with vegetable additives. The Journal of Almaty Technological University, 2, 124–130. doi: https://doi.org/10.48184/2304-568x-2023-2-124-130
  53. Tarazona-Díaz, M. P., Viegas, J., Moldao-Martins, M., Aguayo, E. (2010). Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. Journal of the Science of Food and Agriculture, 91 (5), 805–812. doi: https://doi.org/10.1002/jsfa.4250
  54. Manivannan, A., Lee, E.-S., Han, K., Lee, H.-E., Kim, D.-S. (2020). Versatile Nutraceutical Potentials of Watermelon – A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules, 25 (22), 5258. doi: https://doi.org/10.3390/molecules25225258
  55. Bailey, S. J., Blackwell, J. R., Williams, E., Vanhatalo, A., Wylie, L. J., Winyard, P. G., Jones, A. M. (2016). Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide, 59, 10–20. doi: https://doi.org/10.1016/j.niox.2016.06.008
  56. Pat. No. CN104544413A. Watermelon juice production technology. Available at: https://patents.google.com/patent/CN104544413A/en
  57. Ostonakulov, T. E., Umirova, D. M. (2023). Ultra-early maturing watermelon hybrids in Uzbekistan. Potato and vegetables, 4, 31–34. doi: https://doi.org/10.25630/pav.2023.88.34.002
Establishing the regularities of blending functional purpose juices based on watermelon juice

Downloads

Published

2023-10-31

How to Cite

Zhumaliyeva, G., Chomanov, U., Tultabayev, M., Aktokalova, G., Tultabayevа T., Kenenbay, G., Kasymbek, R., & Tultabayev, N. (2023). Establishing the regularities of blending functional purpose juices based on watermelon juice. Eastern-European Journal of Enterprise Technologies, 5(11 (125), 57–66. https://doi.org/10.15587/1729-4061.2023.288226

Issue

Section

Technology and Equipment of Food Production