Establishing the regularities of blending functional purpose juices based on watermelon juice
DOI:
https://doi.org/10.15587/1729-4061.2023.288226Keywords:
melon crops, watermelon juice, rosehip juice, processing of melons, juice blendingAbstract
The objects of the research are fruit and berry juices from watermelon, rosehip, apples and pumpkin. The influence of the physico-chemical parameters of fruit and berry juices on the process of storage and blending is investigated. It has been found that quantitative regulation depending on the physico-chemical parameters of fruit and berry juices during the development of blended juice technology makes it possible to develop a drink with a long shelf life. The developed juices should satisfy the body's needs for vitamins and minerals in food necessary for the normal development of the body. Based on research, watermelon-pumpkin-rosehip juice is recommended.
However, the consumer properties of natural juices depend on the variety and climatic conditions of growth. The climatic conditions of growth and the variety significantly affect the physico-chemical parameters of the juices obtained from them. All this allows us to assert that it is advisable to conduct a study devoted to establishing the influence of the physico-chemical parameters of fruit and berry juices based on watermelon juice on the process of storage and blending.
Juices are the most technologically advanced product for creating new types of functional nutrition. In addition, they contain a complex of vitamins and minerals in their composition.
In connection with the above, the development of technology and the organization of the production of functional purpose juices are the solution to problems related to nutrition.
It is found that the resulting new product – watermelon-pumpkin-rosehip drink will allow you to get a new product with high quality indicators and expand the range of fruit and berry drinks based on watermelon juice
References
- Lucier, B., Lin, B.-H. (2001). Factors affecting watermelon consumption in the United States. Department of Agriculture-Economic Research Service, USDA.
- ,5 млн тонн зерна намолочено в Казахстане – МСХ. Available at: https://vlast.kz/novosti/35071-55-mln-tonn-zerna-namoloceno-v-kazahstane-msh.html
- Tultabayev, M., Chomanov, U., Tultabayeva, T., Shoman, A., Dodaev, K., Azimov, U., Zhumanova, U. (2022). Identifying patterns in the fatty-acid composition of safflower depending on agroclimatic conditions. Eastern-European Journal of Enterprise Technologies, 2 (11 (116)), 23–28. doi: https://doi.org/10.15587/1729-4061.2022.255336
- Tultabayeva, T. C., Chomanov, U. C., Tultabayev, M. C., Zhumaliyeva, G. E., Kenenbay, G. S., Shoman, A. Y., Shoman, A. K. (2022). Synthesis, Characterization and Physical Properties of Polyunsaturated Fatty Acids and Co Zero-Valent Nanoparticles/Polyunsaturated Fatty Acids. Journal of Nanostructures, 12 (4), 1049–1058. Available at: https://jns.kashanu.ac.ir/article_111939.html
- Liu, W., Zhao, S., Cheng, Z., Wan, X., Yan, Z., King, S. R. (2010). Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Horticulturae, 871, 543–550. doi: https://doi.org/10.17660/actahortic.2010.871.75
- Shi, F., Wang, L., Li, S. (2023). Enhancement in the physicochemical properties, antioxidant activity, volatile compounds, and non-volatile compounds of watermelon juices through Lactobacillus plantarum JHT78 fermentation. Food Chemistry, 420, 136146. doi: https://doi.org/10.1016/j.foodchem.2023.136146
- Mandha, J., Shumoy, H., Devaere, J., Schouteten, J. J., Gellynck, X., de Winne, A. et al. (2021). Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Food Chemistry, 358, 129809. doi: https://doi.org/10.1016/j.foodchem.2021.129809
- Dogan, K., Akman, P. K., Tornuk, F. (2021). Role of non‐thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice. Journal of the Science of Food and Agriculture, 101 (11), 4779–4788. doi: https://doi.org/10.1002/jsfa.11124
- Ricci, A., Cirlini, M., Levante, A., Dall’Asta, C., Galaverna, G., Lazzi, C. (2018). Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Research International, 105, 412–422. doi: https://doi.org/10.1016/j.foodres.2017.11.042
- Rodríguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C. et al. (2009). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132 (2-3), 79–90. doi: https://doi.org/10.1016/j.ijfoodmicro.2009.03.025
- Liu, Y., He, C., Song, H. (2018). Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Research International, 107, 119–129. doi: https://doi.org/10.1016/j.foodres.2018.02.022
- Yang, F., Shi, C., Yan, L., Xu, Y., Dai, Y., Bi, S., Liu, Y. (2022). Low-frequency ultrasonic treatment: A potential strategy to improve the flavor of fresh watermelon juice. Ultrasonics Sonochemistry, 91, 106238. doi: https://doi.org/10.1016/j.ultsonch.2022.106238
- Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44 (5), 1168–1173. doi: https://doi.org/10.1016/j.foodres.2010.07.005
- Al-Sayed, H. M. A., Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58 (1), 83–95. doi: https://doi.org/10.1016/j.aoas.2013.01.012
- Mendoza-Enano, M. L., Stanley, R., Frank, D. (2019). Linking consumer sensory acceptability to volatile composition for improved shelf-life: A case study of fresh-cut watermelon (Citrullus lanatus). Postharvest Biology and Technology, 154, 137–147. doi: https://doi.org/10.1016/j.postharvbio.2019.03.018
- Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. Journal of Food Measurement and Characterization, 14 (3), 1417–1426. doi: https://doi.org/10.1007/s11694-020-00391-7
- Liu, Y., He, C., Song, H. (2018). Comparison of SPME Versus SAFE Processes for the Analysis of Flavor Compounds in Watermelon Juice. Food Analytical Methods, 11 (6), 1677–1689. doi: https://doi.org/10.1007/s12161-018-1153-x
- Perkins-Veazie, P., K. Collins, J., Clevidence, B. (2007). Watermelons and health. Acta Horticulturae, 731, 121–128. doi: https://doi.org/10.17660/actahortic.2007.731.17
- Beaulieu, J. C., Lea, J. M. (2006). Characterization and Semiquantitative Analysis of Volatiles in Seedless Watermelon Varieties Using Solid-Phase Microextraction. Journal of Agricultural and Food Chemistry, 54 (20), 7789–7793. doi: https://doi.org/10.1021/jf060663l
- Aguiló-Aguayo, I., Montero-Calderón, M., Soliva-Fortuny, R., Martín-Belloso, O. (2010). Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. Journal of Food Engineering, 100 (1), 43–49. doi: https://doi.org/10.1016/j.jfoodeng.2010.03.025
- Dima, G., Tripodi, G., Condurso, C., Verzera, A. (2014). Volatile constituents of mini-watermelon fruits. Journal of Essential Oil Research, 26 (5), 323–327. doi: https://doi.org/10.1080/10412905.2014.933449
- Fredes, A., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., Pérez-de-Castro, A., Gisbert, C., Picó, M. B. (2016). Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 97 (5), 1646–1655. doi: https://doi.org/10.1002/jsfa.7915
- Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S. et al. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12 (3), 169–196. doi: https://doi.org/10.1006/jfca.1999.0827
- Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A. et al. (2005). Not just colors – carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science & Technology, 16 (9), 407–415. doi: https://doi.org/10.1016/j.tifs.2005.04.004
- Pino, J. A., Marbot, R., Aguero, J. (2003). Volatile Components of Watermelon (Citrullus Ianatus[Thunb.] Matsum. et Nakai) Fruit. Journal of Essential Oil Research, 15 (6), 379–380. doi: https://doi.org/10.1080/10412905.2003.9698616
- Saftner, R., Luo, Y., McEvoy, J., Abbott, J. A., Vinyard, B. (2007). Quality characteristics of fresh-cut watermelon slices from non-treated and 1-methylcyclopropene- and/or ethylene-treated whole fruit. Postharvest Biology and Technology, 44 (1), 71–79. doi: https://doi.org/10.1016/j.postharvbio.2006.11.002
- Xisto, A. L. R. P., Boas, E. V. de B. V., Nunes, E. E., Federal, B. M. V. B., Guerreiro, M. C. (2012). Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Food Science and Technology, 32 (1), 173–178. doi: https://doi.org/10.1590/s0101-20612012005000020
- Yajima, I., Sakakibara, H., Ide, J., Yanai, T., Kazuo, H. (1985). Volatile Flavor Components of Watermelon (Citrullus vulgaris). Agricultural and Biological Chemistry, 49 (11), 3145–3150. doi: https://doi.org/10.1080/00021369.1985.10867246
- Fukushige, H., Hildebrand, D. F. (2005). Watermelon (Citrullus lanatus) Hydroperoxide Lyase Greatly Increases C6 Aldehyde Formation in Transgenic Leaves. Journal of Agricultural and Food Chemistry, 53 (6), 2046–2051. doi: https://doi.org/10.1021/jf048391e
- Schwab, W. (2007). Genetic Engineering of Plants and Microbial Cells for Flavour Production. Flavours and Fragrances, 615–628. doi: https://doi.org/10.1007/978-3-540-49339-6_26
- Pereira, J. A. M., Berenguer, C. V., Andrade, C. F. P., Câmara, J. S. (2022). Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. Applied Sciences, 12 (5), 2747. doi: https://doi.org/10.3390/app12052747
- Du, X., Davila, M., Ramirez, J., Williams, C. (2022). Free Amino Acids and Volatile Aroma Compounds in Watermelon Rind, Flesh, and Three Rind-Flesh Juices. Molecules, 27 (8), 2536. doi: https://doi.org/10.3390/molecules27082536
- Pat. No. CN101690600A. Is a composite drink made from watermelon juice and a method of its preparation. Available at: https://patents.google.com/patent/CN101690600A/en/
- Nkoana, D. K., Mashilo, J., Shimelis, H., Ngwepe, R. M. (2022). Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A Review. South African Journal of Botany, 145, 65–77. doi: https://doi.org/10.1016/j.sajb.2020.12.008
- Maletti, L., D’Eusanio, V., Lancellotti, L., Marchetti, A., Pincelli, L., Strani, L., Tassi, L. (2022). Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. Future Foods, 6, 100182. doi: https://doi.org/10.1016/j.fufo.2022.100182
- Volino-Souza, M., Oliveira, G. V., Vargas, R., Tavares, A. C., Conte-Junior, C. A., Alvares, T. da S. (2022). Effect of microencapsulated watermelon (Citrullus lanatus) intake on plasma amino acids and glycemic response in healthy adults. Food Bioscience, 46, 101553. doi: https://doi.org/10.1016/j.fbio.2022.101553
- Cano-Lamadrid, M., Artés-Hernández, F. (2021). By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods, 11 (1), 59. doi: https://doi.org/10.3390/foods11010059
- Aguayo, E., Martínez-Sánchez, A., Fernández-Lobato, B., Alacid, F. (2021). L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Applied Sciences, 11 (7), 3293. doi: https://doi.org/10.3390/app11073293
- Martínez, C., Valenzuela, J. L., Jamilena, M. (2021). Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants, 10 (6), 894. doi: https://doi.org/10.3390/antiox10060894
- Zhumaliyeva, G., Chomanov, U., Tultabaeva, T., Tultabayev, M., Kasymbek, R. (2020). Formation of Processes of Intensification of Crop Growth For The Formation of Business Structures. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.4128701
- Wu, K., Lou, J., Li, C., Li, J. (2021). Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons. Agriculture, 11 (8), 736. doi: https://doi.org/10.3390/agriculture11080736
- Sorokina, M., McCaffrey, K. S., Deaton, E. E., Ma, G., Ordovás, J. M., Perkins-Veazie, P. M. et al. (2021). A Catalog of Natural Products Occurring in Watermelon – Citrullus lanatus. Frontiers in Nutrition, 8. doi: https://doi.org/10.3389/fnut.2021.729822
- Yang, F., Chen, E., Dai, Y., Xu, Y., Liu, Y., Bi, S. (2022). Elucidation of the interaction between fructose and key aroma compounds in watermelon juice via Raman spectroscopy and nuclear magnetic resonance. Food Research International, 159, 111613. doi: https://doi.org/10.1016/j.foodres.2022.111613
- Perkins-Veazie, P., Collins, J. K. (2004). Flesh quality and lycopene stability of fresh-cut watermelon. Postharvest Biology and Technology, 31 (2), 159–166. doi: https://doi.org/10.1016/j.postharvbio.2003.08.005
- Davis, A. R., Fish, W. W., Perkins-Veazie, P. (2003). A Rapid Hexane-free Method for Analyzing Lycopene Content in Watermelon. Journal of Food Science, 68 (1), 328–332. doi: https://doi.org/10.1111/j.1365-2621.2003.tb14160.x
- Fonseca, J. M. et al. (1999). Shock and vibration forces influence the quality of fresh-cut watermelon. Proc. Fla. State Hort.
- Doan, H. V., Hoseinifar, S. H., Naraballobh, W., Paolucci, M., Wongmaneeprateep, S., Charoenwattanasak, S. et al. (2021). Dietary inclusion of watermelon rind powder and Lactobacillus plantarum: Effects on Nile tilapia's growth, skin mucus and serum immunities, and disease resistance. Fish & Shellfish Immunology, 116, 107–114.
- Burton-Freeman, B., Freeman, M., Zhang, X., Sandhu, A., Edirisinghe, I. (2021). Watermelon and l-Citrulline in Cardio-Metabolic Health: Review of the Evidence 2000–2020. Current Atherosclerosis Reports, 23 (12). doi: https://doi.org/10.1007/s11883-021-00978-5
- Ramirez, J. L., Juma, S., Du, X. (2021). Consumer acceptance of watermelon flesh‐rind blends and the effect of rind on refreshing perception. Journal of Food Science, 86 (4), 1384–1392. doi: https://doi.org/10.1111/1750-3841.15648
- Kumar, V., Jain, S. K., Amitabh, A., Chavan, S. M. (2021). Effect of ohmic heating on physicochemical, bioactive compounds, and shelf life of watermelon flesh‐rind drinks. Journal of Food Process Engineering, 45 (7). doi: https://doi.org/10.1111/jfpe.13818
- Pravallika, K., Chakraborty, S. (2022). Effect of nonthermal technologies on the shelf life of fruits and their products: A review on the recent trends. Applied Food Research, 2 (2), 100229. doi: https://doi.org/10.1016/j.afres.2022.100229
- Tultabayeva, Т. Ch., Zhumanova, U. T., Tultabayev, M. Ch., Shoman, А. Ye., Shoman, A. K. (2023). The research of technological drying modes of combined fermented milk protein products with vegetable additives. The Journal of Almaty Technological University, 2, 124–130. doi: https://doi.org/10.48184/2304-568x-2023-2-124-130
- Tarazona-Díaz, M. P., Viegas, J., Moldao-Martins, M., Aguayo, E. (2010). Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. Journal of the Science of Food and Agriculture, 91 (5), 805–812. doi: https://doi.org/10.1002/jsfa.4250
- Manivannan, A., Lee, E.-S., Han, K., Lee, H.-E., Kim, D.-S. (2020). Versatile Nutraceutical Potentials of Watermelon – A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules, 25 (22), 5258. doi: https://doi.org/10.3390/molecules25225258
- Bailey, S. J., Blackwell, J. R., Williams, E., Vanhatalo, A., Wylie, L. J., Winyard, P. G., Jones, A. M. (2016). Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide, 59, 10–20. doi: https://doi.org/10.1016/j.niox.2016.06.008
- Pat. No. CN104544413A. Watermelon juice production technology. Available at: https://patents.google.com/patent/CN104544413A/en
- Ostonakulov, T. E., Umirova, D. M. (2023). Ultra-early maturing watermelon hybrids in Uzbekistan. Potato and vegetables, 4, 31–34. doi: https://doi.org/10.25630/pav.2023.88.34.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gulzhan Zhumaliyeva, Urishbai Chomanov, Tamara Tultabaeva, Gulmira Kenenbay, Gulnara Aktokalova, Nurzhan Tultabayev, Rabiga Kasymbek, Mukhtar Tultabaev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.