Vehicle routing problem optimization with machine learning in imbalanced classification vehicle route data

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.288280

Keywords:

vehicle routing problem, machine learning, classification, unbalanced data

Abstract

The object of this research is a combinatorial optimization problem arising in the problem of the route of goods delivery vehicles. In this study, the proposed method for solving combinatorial optimization problems consists of several stages: Data Cleaning, Data Preprocessing, K-NN and Cavacity Vehicle Routing Problem model. The results show that the machine learning approach can optimise combinatorial optimization problems, especially in generating vehicle route points and delivery capacity. The characteristics in determining vehicle routes by considering latitude and longitude points. This research builds a framework and implements it in a multi-class optimization model to reduce overfitting and misclassification results caused by unbalanced multiclassification from the influence of the number of 'nodes' on vehicle routes with machine learning. The purpose of the model in general is to gain an understanding of the mechanism in the problem so that it can classify unbalanced vehicle route data based on Jalur Nugraha Ekakurir delivery routes. So that with the availability of the model can be a model in determining vehicle routes based on the capacity limit of the number of shipments of goods. The results of research with machine learning models and vehicle routing problems with testing K values 11, 13, 15. Where it has a percentage of K=11 accuracy 57.3265 % and K=13 accuracy 57.3265 % and K=15 accuracy 81.8645 %. From the test results with odd K values have better accuracy and the K 15 K=15 value is better with a percentage of 81.8645 % compared to K 11 K=11, and 13 K=13. As a result, the developed model in terms of accuracy of the cavacity vehicle routing problem model has an accuracy of 93.80 % and the time series achieves an average precision of 93.31 % and with a recall value of 93.80 %. The results obtained can be useful in developing a more modern model, Cavacity Vehicle Routing Problem with Machine Learning

Author Biographies

Muhammad Syahputra Novelan, Universitas Sumatera Utara

Doctoral Program of Computer Science

Department of Computer Science and Information Technology

Syahril Efendi, Universitas Sumatera Utara

Department of Computer Science

Department of Computer Science and Information Technology

Poltak Sihombing, Universitas Sumatera Utara

Department of Computer Science

Department of Computer Science and Information Technology

Herman Mawengkang, Universitas Sumatera Utara

Professor of Mathematics and Natural Sciences

Department of Mathematics and Natural Sciences

References

  1. Soenandi, I. A., Marpaung, B., Ginting, M. (2017). Optimasi Vehicle Routing Problem (Vrp)Dengan Pendekatan Metaheuristik(Studi Kasus Distribusi Bahan Baku Makanan). Jurnal Ilmiah Teknik Industri, 2 (2). doi: https://doi.org/10.24912/jitiuntar.v2i2.487
  2. Juliandri, D., Mawengkang, H., Bu’ulolo, F. (2018). Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints. IOP Conference Series: Materials Science and Engineering, 300, 012024. doi: https://doi.org/10.1088/1757-899x/300/1/012024
  3. Liong, C.-Y., Wan, I., Omar, K. (2008). Vehicle routing problem: Models and solutions. Journal of Quality Measurement and Analysis, 4 (1), 205–218. Available at: https://www.researchgate.net/publication/313005083_Vehicle_routing_problem_Models_and_solutions
  4. Alweshah, M., Almiani, M., Almansour, N., Al Khalaileh, S., Aldabbas, H., Alomoush, W., Alshareef, A. (2022). Vehicle routing problems based on Harris Hawks optimization. Journal of Big Data, 9 (1). doi: https://doi.org/10.1186/s40537-022-00593-4
  5. Zhu, X., Yan, R., Huang, Z., Wei, W., Yang, J., Kudratova, S. (2020). Logistic Optimization for Multi Depots Loading Capacitated Electric Vehicle Routing Problem From Low Carbon Perspective. IEEE Access, 8, 31934–31947. doi: https://doi.org/10.1109/access.2020.2971220
  6. Jayarathna, D. G. N. D., Lanel, G. H. J., Juman, Z. A. M. S. (2022). Industrial vehicle routing problem: a case study. Journal of Shipping and Trade, 7 (1). doi: https://doi.org/10.1186/s41072-022-00108-7
  7. Faiz, A., Subiyanto, S., Arief, U. M. (2018). A Modified Meta-Heuristic Approach for Vehicle Routing Problem with Simultaneous Pickup and Delivery. International Journal of Artificial Intelligence Research, 2 (2), 81. doi: https://doi.org/10.29099/ijair.v2i2.71
  8. Basso, R., Kulcsár, B., Sanchez-Diaz, I. (2021). Electric vehicle routing problem with machine learning for energy prediction. Transportation Research Part B: Methodological, 145, 24–55. doi: https://doi.org/10.1016/j.trb.2020.12.007
  9. Amelia, A., Zarlis, M., Suherman, S., Efendi, S. (2023). Vehicle detection system based on shape, color, and time-motion. IAES International Journal of Artificial Intelligence (IJ-AI), 12 (3), 1070. doi: https://doi.org/10.11591/ijai.v12.i3.pp1070-1082
  10. Ajie Sukarno, S., Erdani, Y. (2020). Desain Antarmuka Pada Vehicle Routing Problem Untuk Manajemen Armada Multi-Drone. Jurnal Ilmiah Ilmu Komputer, 6 (2), 7–14. doi: https://doi.org/10.35329/jiik.v6i2.150
  11. Ramadhanti, N. S., Kusuma, W. A., Annisa, A. (2020). Optimasi Data Tidak Seimbang pada Interaksi Drug Target dengan Sampling dan Ensemble Support Vector Machine. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7 (6), 1221. doi: https://doi.org/10.25126/jtiik.2020762857
  12. Bujang, S. D. A., Selamat, A., Ibrahim, R., Krejcar, O., Herrera-Viedma, E., Fujita, H., Ghani, N. A. Md. (2021). Multiclass Prediction Model for Student Grade Prediction Using Machine Learning. IEEE Access, 9, 95608–95621. doi: https://doi.org/10.1109/access.2021.3093563
  13. Gurcan, F. (2018). Multi-Class Classification of Turkish Texts with Machine Learning Algorithms. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). doi: https://doi.org/10.1109/ismsit.2018.8567307
  14. Genkin, M. (2020). Zero-Shot Machine Learning Technique for Classification of Multi-User Big Data Workloads. 2020 IEEE International Conference on Big Data (Big Data). doi: https://doi.org/10.1109/bigdata50022.2020.9378023
  15. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R. et al. (2021). Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. IEEE Transactions on Knowledge and Data Engineering, 1–1. doi: https://doi.org/10.1109/tkde.2021.3079836
  16. Furian, N., O’Sullivan, M., Walker, C., Çela, E. (2021). A machine learning-based branch and price algorithm for a sampled vehicle routing problem. OR Spectrum, 43 (3), 693–732. doi: https://doi.org/10.1007/s00291-020-00615-8
  17. Hirst, J. D., Boobier, S., Coughlan, J., Streets, J., Jacob, P. L., Pugh, O. et al. (2023). ML meets MLn: Machine learning in ligand promoted homogeneous catalysis. Artificial Intelligence Chemistry, 1 (2), 100006. doi: https://doi.org/10.1016/j.aichem.2023.100006
  18. Bansal, M., Goyal, A., Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, 3, 100071. doi: https://doi.org/10.1016/j.dajour.2022.100071
  19. Jin, H., Kim, Y.-G., Jin, Z., Rushchitc, A. A., Al-Shati, A. S. (2022). Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models. Energy Reports, 8, 13979–13996. doi: https://doi.org/10.1016/j.egyr.2022.10.334
  20. Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Nannarelli, A., Re, M., Spano, S. (2020). N -Dimensional Approximation of Euclidean Distance. IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (3), 565–569. doi: https://doi.org/10.1109/tcsii.2019.2919545
  21. Wazery, Y. M., Saber, E., Houssein, E. H., Ali, A. A., Amer, E. (2021). An Efficient Slime Mould Algorithm Combined With K-Nearest Neighbor for Medical Classification Tasks. IEEE Access, 9, 113666–113682. doi: https://doi.org/10.1109/access.2021.3105485
  22. Sumayli, A. (2023). Development of advanced machine learning models for optimization of methyl ester biofuel production from papaya oil: Gaussian process regression (GPR), multilayer perceptron (MLP), and K-nearest neighbor (KNN) regression models. Arabian Journal of Chemistry, 16 (7), 104833. doi: https://doi.org/10.1016/j.arabjc.2023.104833
  23. Habib, Y., Filchenkov, A. (2022). Multi-Agent Reinforcement Learning For Multi Vehicles One-commodity Vehicle Routing Problem. Procedia Computer Science, 212, 418–428. doi: https://doi.org/10.1016/j.procs.2022.11.026
  24. Margossian, H., Deconinck, G., Sachau, J. (2015). Distribution network protection considering grid code requirements for distributed generation. IET Generation, Transmission & Distribution, 9 (12), 1377–1381. doi: https://doi.org/10.1049/iet-gtd.2014.0987
  25. Núñez-Mata, O., Palma-Behnke, R., Valencia, F., Urrutia-Molina, A., Mendoza-Araya, P., Jiménez-Estévez, G. (2019). Coupling an adaptive protection system with an energy management system for microgrids. The Electricity Journal, 32 (10), 106675. doi: https://doi.org/10.1016/j.tej.2019.106675
Vehicle routing problem optimization with machine learning in imbalanced classification vehicle route data

Downloads

Published

2023-10-31

How to Cite

Novelan, M. S., Efendi, S., Sihombing, P., & Mawengkang, H. (2023). Vehicle routing problem optimization with machine learning in imbalanced classification vehicle route data. Eastern-European Journal of Enterprise Technologies, 5(3 (125), 49–56. https://doi.org/10.15587/1729-4061.2023.288280

Issue

Section

Control processes