Assessment of the possibility of using the fruits of the oriental persimo (Diospyros kaki L.) as a source of filter membranes based on the tensor approach

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289339

Keywords:

cellulose, carbohydrate fractionation, stress tensor, node problem, percolation transition, fractal structure

Abstract

Like all raw materials of plant origin, persimmon fruits are considered a material rich in carbohydrates. This subtropical plant grows almost throughout the entire territory of the Republic of Azerbaijan. Despite the widespread distribution of this plant in the republic, very few types of products are produced from it. The main reason why persimmon fruits are not used effectively from a production point of view is that they have astringent properties. Since fruit carbohydrates play an important role in eliminating the tart taste of persimmons, the study of the carbohydrate complex was considered as a basic condition.

After fractionation of carbohydrates with a water-alcohol mixture, certain stresses arise in the filter residue, which consists of cellulose-lignin. These stresses are analyzed using tensors. It has been established that the size of the filter pores is about 0.005÷0.05 microns, and the volume of these pores is 0.062÷0.195 cm3/g. The clearance coefficient averaged 19.97 %.

It is known that the outer layer of a plant cell consists of cellulose and other structural compounds. These substances determine the porosity of the material. The mass fraction of the final product of the fractional residue, more precisely cellulose, averaged 0.63 %.

The use of the resulting filter membrane in the clarification of fruit juices has shown its usefulness in industry. It has been established that the selectivity of these membranes for various amino acids is 5÷18 %, and for minerals 1÷30 %. The lipid resistance of the membranes was high. It should be noted that cellulose has the ability to restore its structure and at the last stage acts only as a filter membrane. This explains the usefulness of the cellulose-lignin mixture as a membrane material

Author Biographies

Mushfiq Khalilov, University of Technology of Azerbaijan

Doctor of Philosophy in Technics, Acting Assistant Professor

Department of Food Engineering and Expertise

Melahet Ismayilova, Ganja State University

PhD Student

Department of Mathematical Analysis

Afet Gasimova, University of Technology of Azerbaijan

Doctor of Philosophy in Technics, Associate Professor

Department of Food Engineering and Expertise

İlhama Kazimova, Azerbaijan State University of Economics (UNEC)

Doctor of Philosophy in Technics, Senior Lecturer

Department of Engineering and Applied Sciences

Sevinj Maharramova, Azerbaijan State University of Economics (UNEC)

Doctor of Philosophy in biology, Associate Professor

Department of Engineering and Applied Sciences

Elza Omarova, Azerbaijan State University of Economics (UNEC)

Doctor of Philosophy in Technics, Associate Professor

Department of Engineering and Applied Sciences

References

  1. Efremov, I. B., Nikolaev, A. N., Sharafutdinov, V. F., Efremov, B. A., Sharafutdinova, A. V. (2013). Gidrodinamika i massoobmen v pul'satsionnom ekstraktore vneshne uravnoveshennogo tipa dlya pererabotki rastitel'nogo syr'ya s uprugoy kletchatkoy. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16 (2), 72–75. Available at: https://cyberleninka.ru/article/n/gidrodinamika-i-massoobmen-v-pulsatsionnom-ekstraktore-vneshne-uravnoveshennogo-tipa-dlya-pererabotki-rastitelnogo-syrya-s-uprugoy
  2. Kovalenko, V. I. (2010). Crystalline cellulose: structure and hydrogen bonds. Russian Chemical Reviews, 79 (3), 231–241. doi: https://doi.org/10.1070/rc2010v079n03abeh004065
  3. Pilipenko, T. V., Pilipenko, N. I., Shlenskaya, T. V. et al. (2014). Vysokotekhnologichnye proizvodstva produktov pitaniya. Sankt-Peterburg: ITS Intermediya, 112. Available at: https://dokumen.pub/9785438300588.html
  4. Shi, G. M., Feng, Y., Li, B., Tham, H. M., Lai, J.-Y., Chung, T.-S. (2021). Recent progress of organic solvent nanofiltration membranes. Progress in Polymer Science, 123, 101470. doi: https://doi.org/10.1016/j.progpolymsci.2021.101470
  5. Omarov, Y., Gurbanova, S., Babayeva, U., Gasimova, A., Heydarov, E., Gasimova, G., Nabiyev, A. (2023). Improving the storage technology of persimmon fruit (Diospyros kaki L.) In the refrigeration chamber. Eastern-European Journal of Enterprise Technologies, 4 (11 (124)), 20–36. doi: https://doi.org/10.15587/1729-4061.2023.285444
  6. Xəlilov, M. A. (2023). Qida məhsullarının keyfiyyətinə texniki-kimyəvi nəzarət. Gəncə, 339. Available at: https://www.researchgate.net/publication/371686695_Xlilov_MA_Qida_mhkeytex-kimnz_DRS_VSAITI_2023_-_kopiadocx5
  7. Wittmar, A. S. M., Koch, D., Prymak, O., Ulbricht, M. (2020). Factors Affecting the Nonsolvent-Induced Phase Separation of Cellulose from Ionic Liquid-Based Solutions. ACS Omega, 5 (42), 27314–27322. doi: https://doi.org/10.1021/acsomega.0c03632
  8. Nam Kung, D. C., Wook Kang, S. (2023). Highly dense and porous structure generated by 1,2,3-trihydroxy propane in cellulose materials. Journal of Industrial and Engineering Chemistry, 124, 474–480. doi: https://doi.org/10.1016/j.jiec.2023.05.001
  9. Olsson, C., Idström, A., Nordstierna, L., Westman, G. (2014). Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers, 99, 438–446. doi: https://doi.org/10.1016/j.carbpol.2013.08.042
  10. Medronho, B., Lindman, B. (2014). Competing forces during cellulose dissolution: From solvents to mechanisms. Current Opinion in Colloid & Interface Science, 19 (1), 32–40. doi: https://doi.org/10.1016/j.cocis.2013.12.001
  11. Livazovic, S., Li, Z., Behzad, A. R., Peinemann, K.-V., Nunes, S. P. (2015). Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science, 490, 282–293. doi: https://doi.org/10.1016/j.memsci.2015.05.009
  12. Aristizábal, S. L., Lively, R. P., Nunes, S. P. (2023). Solvent and thermally stable polymeric membranes for liquid molecular separations: Recent advances, challenges, and perspectives. Journal of Membrane Science, 685, 121972. doi: https://doi.org/10.1016/j.memsci.2023.121972
  13. Petrini, A. L. E. R., Esteves, C. L. C. S., Boldrini, J. L., Bittencourt, M. L. (2023). A fourth-order degradation tensor for an anisotropic damage phase-field model. Forces in Mechanics, 12, 100224. doi: https://doi.org/10.1016/j.finmec.2023.100224
  14. Bayramov, E., Aliyev, S., Gasimova, A., Gurbanova, S., Kazimova, I. (2022). Increasıng the bıologıcal value of bread through the applıcatıon of pumpkın puree. Eastern-European Journal of Enterprise Technologies, 2 (11 (116)), 58–68. doi: https://doi.org/10.15587/1729-4061.2022.254090
  15. Feder, E. (1991). Fraktaly. Moscow: Mir, 254. Available at: https://www.studmed.ru/feder-e-fraktaly_5c65916a0d4.html
  16. Meyer, N. V. (2018). Modelirovanie protsessa perkolyatsii: vypusknaya kvalifikatsionnaya rabota. Sankt-Peterburgskiy gosudarstvenniy universitet, 19. Available at: https://statmod.ru/_diploma/2018b/13b_14_Meyer.pdf
  17. Faskheev, I. O. (2017). Modelirovanie mekhanicheskikh protsessov v poristykh napolnennykh sredakh s uchetom interaktivnykh sil. Moscow, 95. Available at: https://pandia.ru/text/80/638/14671.php
  18. Maksimov, V. M. (2019). Theoretical and experimental methods for identification of symmetry group (anisotropy type) of filtration properties in low-permeable media. Actual Problems of Oil and Gas, 26. doi: https://doi.org/10.29222/ipng.2078-5712.2019-26.art3
  19. Gavrilova, N. N., Nazarov, V. V. (2015). Analiz poristoy struktury na osnovy adsorbtsionnykh dannykh. Moscow: RKhTU im. D.I. Mendeleeva, 132. Available at: https://www.muctr.ru/upload/iblock/1c4/1c4c1e29aed37f72eaedff29acbe3a2e.pdf
  20. Iudin, D. I., Koposov, E. V. (2012). Fraktaly: ot prostogo k slozhnomu. Nizhniy Novgorod, 200. Available at: https://www.nngasu.ru/unesco/resources/Fractals.PDF
  21. Svolos, L., Mourad, H. M., Manzini, G., Garikipati, K. (2022). A fourth-order phase-field fracture model: Formulation and numerical solution using a continuous/discontinuous Galerkin method. Journal of the Mechanics and Physics of Solids, 165, 104910. doi: https://doi.org/10.1016/j.jmps.2022.104910
Assessment of the possibility of using the fruits of the oriental persimo (Diospyros kaki L.) as a source of filter membranes based on the tensor approach

Downloads

Published

2023-10-31

How to Cite

Khalilov, M., Ismayilova, M., Gasimova, A., Kazimova, İlhama, Maharramova, S., & Omarova, E. (2023). Assessment of the possibility of using the fruits of the oriental persimo (Diospyros kaki L.) as a source of filter membranes based on the tensor approach. Eastern-European Journal of Enterprise Technologies, 5(11 (125), 34–42. https://doi.org/10.15587/1729-4061.2023.289339

Issue

Section

Technology and Equipment of Food Production