Development of bioplastics from Tawaro's environmentally friendly sago starch (metroxylon)

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289626

Keywords:

X-ray diffraction, Tawaro starch, ultraviolet radiation treatment, mechanical properties

Abstract

Sustainable bioplastics made from Tawaro sago starch are investigated in the study. This study is motivated by the global need to lessen the environmental impact of petroleum-based polymers and discover greener alternatives. Tawaro sago starch's amylose concentration, moisture levels, and ecologically friendly qualities are examined in the study. It carefully blends sago starch, glycerol, and an acetic acid and water activator solution to create a bioplastic. The study will examine these bioplastics' chemical composition, crystalline structure, mechanical properties, and reactions to UV radiation and microbial development. Researchers and developers are interested in sago starch, a staple meal in Palopo City, South Sulawesi Province, Indonesia, as a sustainable material. Sago starch is advantageous due to its renewable nature and eco-friendly properties. XRD, mechanical characteristics, and microbiological development in sago bioplastic are examined in the study, providing valuable insights. Tawaro sago bioplastic has no heavy metals, according to XRD. The mechanical characteristics have improved significantly, reaching 2,867 N/mm². A 48-hour UV radiation exposure within limitations changed the chemical chain, causing the improvement. Furthermore, bacteria grow swiftly on sago bioplastic. This research promotes sago-based bioplastics as an eco-friendly alternative to traditional plastics, promoting environmental sustainability. This research supports the global drive to create eco-friendly materials. Using Tawaro sago starch, creative solutions for a greener, more sustainable future are possible, with bioplastics offering a compelling alternative to existing plastics and lowering their environmental impact.

Supporting Agency

  • The author expresses gratitude to the sago processing area in Mancani Village, Telluwanua District, Palopo City, South Sulawesi Province, Indonesia, for providing the raw materials used in this research.

Author Biographies

Budiawan Sulaeman, Hasanuddin University

Doctoral Student, Graduate Student

Department of Mechanical Engineering

Nasaruddin Salam, Hasanuddin University

Doctorate, Professor

Department of Mechanical Engineering

Andi Erwin Eka Putra, Hasanuddin University

Doctorate, Professor

Department of Mechanical Engineering

Lukmanul Hakim Arma, Hasanuddin University

Doctorate, Assistant Professor

Department of Mechanical Engineering

References

  1. Dirpan, A., Hidayat, S. H., Djalal, M., Ainani, A. F., Yolanda, D. S., Kasmira, Khosuma, M. et al. (2023). Trends over the last 25 years and future research into smart packaging for food: A review. Future Foods, 8, 100252. doi: https://doi.org/10.1016/j.fufo.2023.100252
  2. Chowdhury, M. A., Nayem Hossain, Badrudduza, M. D., Rana, Md. M. (2023). Development and characterization of natural sourced bioplastic for food packaging applications. Heliyon, 9 (2), e13538. doi: https://doi.org/10.1016/j.heliyon.2023.e13538
  3. Sun, X. S. (2013). Overview of Plant Polymers. Handbook of Biopolymers and Biodegradable Plastics, 1–10. doi: https://doi.org/10.1016/b978-1-4557-2834-3.00001-x
  4. Soroudi, A., Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49 (10), 2839–2858. doi: https://doi.org/10.1016/j.eurpolymj.2013.07.025
  5. Perez-Puyana, V., Cuartero, P., Jiménez-Rosado, M., Martínez, I., Romero, A. (2022). Physical crosslinking of pea protein-based bioplastics: Effect of heat and UV treatments. Food Packaging and Shelf Life, 32, 100836. doi: https://doi.org/10.1016/j.fpsl.2022.100836
  6. Altskar, A., Andersson, R., Boldizar, A., Koch, K., Stading, M., Rigdahl, M., Thunwall, M. (2008). Some effects of processing on the molecular structure and morphology of thermoplastic starch. Carbohydrate Polymers, 71 (4), 591–597. doi: https://doi.org/10.1016/j.carbpol.2007.07.003
  7. Anugrahwidya, R., Armynah, B., Tahir, D. (2021). Bioplastics Starch-Based with Additional Fiber and Nanoparticle: Characteristics and Biodegradation Performance: A Review. Journal of Polymers and the Environment, 29 (11), 3459–3476. doi: https://doi.org/10.1007/s10924-021-02152-z
  8. Cai, L., Wang, J., Peng, J., Wu, Z., Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of The Total Environment, 628-629, 740–747. doi: https://doi.org/10.1016/j.scitotenv.2018.02.079
  9. Souza, A. C., Benze, R., Ferrão, E. S., Ditchfield, C., Coelho, A. C. V., Tadini, C. C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology, 46 (1), 110–117. doi: https://doi.org/10.1016/j.lwt.2011.10.018
  10. Mostafa, N. A., Farag, A. A., Abo-dief, H. M., Tayeb, A. M. (2018). Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry, 11 (4), 546–553. doi: https://doi.org/10.1016/j.arabjc.2015.04.008
  11. Bidari, R., Abdillah, A. A., Ponce, R. A. B., Charles, A. L. (2023). Characterization of Biodegradable Films Made from Taro Peel (Colocasia esculenta) Starch. Polymers, 15 (2), 338. doi: https://doi.org/10.3390/polym15020338
  12. Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C. et al. (2017). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278–286. doi: https://doi.org/10.1007/s13197-017-2936-6
  13. Yang, J., Ching, Y. C., Chuah, C. H., Liou, N.-S. (2020). Preparation and Characterization of Starch/Empty Fruit Bunch-Based Bioplastic Composites Reinforced with Epoxidized Oils. Polymers, 13 (1), 94. doi: https://doi.org/10.3390/polym13010094
  14. Zuraida, A., Anuar, H., Yusof, Y. (2011). The Study of Biodegradable Thermoplastics Sago Starch. Key Engineering Materials, 471-472, 397–402. doi: https://doi.org/10.4028/www.scientific.net/kem.471-472.397
  15. Abbas, B., Renwarin, Y., Bintoro, M. H., Sudarsono, S., Surahman, M., Ehara, H. (2010). Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA) markers. Biodiversitas Journal of Biological Diversity, 11 (3). doi: https://doi.org/10.13057/biodiv/d110302
  16. Venkateswar Reddy, M., Amulya, K., Rohit, M. V., Sarma, P. N., Venkata Mohan, S. (2014). Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: Integration with dark-fermentative hydrogen production process. International Journal of Hydrogen Energy, 39 (14), 7616–7626. doi: https://doi.org/10.1016/j.ijhydene.2013.09.157
  17. Behera, L., Mohanta, M., Thirugnanam, A. (2022). Intensification of yam-starch based biodegradable bioplastic film with bentonite for food packaging application. Environmental Technology & Innovation, 25, 102180. doi: https://doi.org/10.1016/j.eti.2021.102180
  18. Patwary, M. A. S., Surid, S. M., Gafur, M. A. (2020). Properties and Applications of Biodegradable Polymers. Journal of Research Updates in Polymer Science, 9, 32–41. doi: https://doi.org/10.6000/1929-5995.2020.09.03
  19. Lopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 66, 194–205. doi: https://doi.org/10.1016/j.indcrop.2014.12.025
  20. Qamruzzaman, Md., Ahmed, F., Mondal, Md. I. H. (2021). An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. Journal of Polymers and the Environment, 30 (1), 19–50. doi: https://doi.org/10.1007/s10924-021-02180-9
  21. Ratnawati, R., Widyastuti, S., Utomo, Y., Evawati, D. (2023). Addition of Anadara Granosa Shell Chitosan in Production Bioplastics. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 13 (2), 175–185. doi: https://doi.org/10.29244/jpsl.13.2.175-185
  22. Eby, G. A., Eby, K. L. (2010). Magnesium for treatment-resistant depression: A review and hypothesis. Medical Hypotheses, 74 (4), 649–660. doi: https://doi.org/10.1016/j.mehy.2009.10.051
  23. Springle, N., Li, B., Soma, T., Shulman, T. (2022). The complex role of single-use compostable bioplastic food packaging and foodservice ware in a circular economy: Findings from a social innovation lab. Sustainable Production and Consumption, 33, 664–673. doi: https://doi.org/10.1016/j.spc.2022.08.006
  24. Bishop, G., Styles, D., Lens, P. N. L. (2021). Environmental performance of bioplastic packaging on fresh food produce: A consequential life cycle assessment. Journal of Cleaner Production, 317, 128377. doi: https://doi.org/10.1016/j.jclepro.2021.128377
  25. Burleigh, T. D., Ruhe, C., Forsyth, J. (2003). Photo-Corrosion of Different Metals during Long-Term Exposure to Ultraviolet Light. Corrosion, 59 (9), 774–779. doi: https://doi.org/10.5006/1.3277606
  26. Havstad, M. R. (2020). Biodegradable plastics. Plastic Waste and Recycling, 97–129. doi: https://doi.org/10.1016/b978-0-12-817880-5.00005-0
  27. Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., Besar, N. A. (2023). Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. Journal of Bioresources and Bioproducts. doi: https://doi.org/10.1016/j.jobab.2023.06.005
  28. Jones, A., Mandal, A., Sharma, S. (2017). Antibacterial and Drug Elution Performance of Thermoplastic Blends. Journal of Polymers and the Environment, 26 (1), 132–144. doi: https://doi.org/10.1007/s10924-016-0924-y
  29. Pal, M. K., Lavanya, M. (2022). Microbial Influenced Corrosion: Understanding Bioadhesion and Biofilm Formation. Journal of Bio- and Tribo-Corrosion, 8 (3). doi: https://doi.org/10.1007/s40735-022-00677-x
Development of bioplastics from Tawaro's environmentally friendly sago starch (metroxylon)

Downloads

Published

2023-10-31

How to Cite

Sulaeman, B., Salam, N., Putra, A. E. E., & Arma, L. H. (2023). Development of bioplastics from Tawaro’s environmentally friendly sago starch (metroxylon). Eastern-European Journal of Enterprise Technologies, 5(12 (125), 6–16. https://doi.org/10.15587/1729-4061.2023.289626

Issue

Section

Materials Science